FrequencyDomainSpikeAnalysisResult#
- class neurodent.visualization.FrequencyDomainSpikeAnalysisResult(result_sas: list[SortingAnalyzer] | None = None, result_mne: RawArray | None = None, spike_indices: list[ndarray] | None = None, detection_params: dict | None = None, animal_id: str | None = None, genotype: str | None = None, animal_day: str | None = None, bin_folder_name: str | None = None, metadata: DDFBinaryMetadata | None = None, channel_names: list[str] | None = None, assume_from_number=False) None[source]#
Bases:
AnimalFeatureParserWrapper for frequency-domain spike detection results.
This class mirrors the SpikeAnalysisResult interface to ensure compatibility with existing WindowAnalysisResult.read_sars_spikes() infrastructure.
- Parameters:
result_sas (list[SortingAnalyzer])
result_mne (RawArray)
spike_indices (list[ndarray])
detection_params (dict)
animal_id (str)
genotype (str)
animal_day (str)
bin_folder_name (str)
metadata (DDFBinaryMetadata)
channel_names (list[str])
- __init__(result_sas: list[SortingAnalyzer] | None = None, result_mne: RawArray | None = None, spike_indices: list[ndarray] | None = None, detection_params: dict | None = None, animal_id: str | None = None, genotype: str | None = None, animal_day: str | None = None, bin_folder_name: str | None = None, metadata: DDFBinaryMetadata | None = None, channel_names: list[str] | None = None, assume_from_number=False) None[source]#
Initialize FrequencyDomainSpikeAnalysisResult.
- Parameters:
result_sas (
list[si.SortingAnalyzer], optional) – SpikeInterface SortingAnalyzers for compatibilityresult_mne (
mne.io.RawArray, optional) – MNE RawArray with spike annotationsspike_indices (
list[np.ndarray], optional) – Raw spike detection results per channeldetection_params (
dict, optional) – Parameters used for spike detectionanimal_id (
str, optional) – Identifier for the animalgenotype (
str, optional) – Genotype of animalanimal_day (
str, optional) – Recording day identifierbin_folder_name (
str, optional) – Binary folder namemetadata (
core.DDFBinaryMetadata, optional) – Recording metadatachannel_names (
list[str], optional) – List of channel namesassume_from_number (
bool, optional) – Assume channel names from numbers
- Return type:
None
- classmethod from_detection_results(spike_indices_per_channel: list[ndarray], mne_raw_with_annotations: RawArray, detection_params: dict, animal_id: str | None = None, genotype: str | None = None, animal_day: str | None = None, bin_folder_name: str | None = None, metadata: DDFBinaryMetadata | None = None, assume_from_number: bool = False)[source]#
Create FrequencyDomainSpikeAnalysisResult from raw detection outputs.
- Parameters:
spike_indices_per_channel (
list[ndarray]) – List of spike sample indices per channelmne_raw_with_annotations (
RawArray) – MNE RawArray with spike annotationsdetection_params (
dict) – Parameters used for detectionanimal_id (
str|None(default:None)) – Identifier for the animalgenotype (
str|None(default:None)) – Genotype of animalanimal_day (
str|None(default:None)) – Recording day identifierbin_folder_name (
str|None(default:None)) – Binary folder namemetadata (
DDFBinaryMetadata|None(default:None)) – Recording metadataassume_from_number (
bool(default:False)) – Assume channel names from numbers
- Returns:
Initialized result object
- Return type:
- convert_to_mne(chunk_len: float = 60, save_raw=True) RawArray[source]#
Convert SortingAnalyzers to MNE RawArray (mirrors SpikeAnalysisResult interface).
- Parameters:
chunk_len (
float(default:60)) – Chunk length for processing (compatibility parameter)save_raw (default:
True) – Whether to save the result internally
- Returns:
MNE RawArray with spike annotations
- Return type:
mne.io.RawArray
- save_fif_and_json(folder: str | Path, convert_to_mne=True, make_folder=True, slugify_filebase=True, save_abbrevs_as_chnames=False, overwrite=False)[source]#
Archive frequency domain spike analysis result as fif and json files. Mirrors the SpikeAnalysisResult.save_fif_and_json interface.
- Parameters:
folder (
str|Path) – Destination folder to save resultsconvert_to_mne (default:
True) – If True, convert to MNE if neededmake_folder (default:
True) – If True, create folder if it doesn’t existslugify_filebase (default:
True) – If True, slugify the filename basesave_abbrevs_as_chnames (default:
False) – If True, save abbreviations as channel namesoverwrite (default:
False) – If True, overwrite existing files
- classmethod load_fif_and_json(folder: str | Path)[source]#
Load FrequencyDomainSpikeAnalysisResult from fif and json files. Mirrors the SpikeAnalysisResult.load_fif_and_json interface.
- Parameters:
folder (
str|Path) – Folder containing the saved files- Returns:
Loaded result object
- Return type:
- plot_spike_averaged_traces(tmin=-0.5, tmax=0.5, baseline=None, save_dir=None, animal_id=None, save_epoch=True)[source]#
Plot spike-triggered averages for each channel.
Based on plot_spike_evoked_by_channel from the pipeline script.
- Parameters:
tmin (default:
-0.5) – Start time for epochs (seconds)tmax (default:
0.5) – End time for epochs (seconds)baseline (default:
None) – Baseline correction periodsave_dir (default:
None) – Directory to save plots and epoch dataanimal_id (default:
None) – Animal identifier for filenamessave_epoch (default:
True) – Whether to save epoch data
- Returns:
Spike counts per channel, keyed by channel index
- Return type:
dict
- get_spike_counts_per_channel() list[int][source]#
Get spike counts per channel.
- Returns:
Number of detected spikes per channel
- Return type:
list