Skip to content

Results

AnimalOrganizer

Bases: AnimalFeatureParser

Source code in pythoneeg/visualization/results.py
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
class AnimalOrganizer(AnimalFeatureParser):
    def __init__(
        self,
        base_folder_path,
        anim_id: str,
        day_sep: str | None = None,
        mode: Literal["nest", "concat", "base", "noday"] = "concat",
        assume_from_number=False,
        skip_days: list[str] = [],
        truncate: bool | int = False,
        lro_kwargs: dict = {},
    ) -> None:
        """
        AnimalOrganizer is used to organize data from a single animal into a format that can be used for analysis.
        It is used to organize data from a single animal into a format that can be used for analysis.

        Args:
            base_folder_path (str): The path to the base folder of the animal data.
            anim_id (str): The ID of the animal. This should correspond to only one animal.
            day_sep (str, optional): Separator for day in folder name. Set to None or empty string to get all folders. Defaults to None.
            mode (Literal["nest", "concat", "base", "noday"], optional): The mode of the AnimalOrganizer. Defaults to "concat".
                "nest": base_folder_path / animal_id / date_format
                "concat": base_folder_path / animal_id*date_format
                "base": base_folder_path
                "noday": base_folder_path / animal_id
            assume_from_number (bool, optional): Whether to assume the animal ID is a number. Defaults to False.
            skip_days (list[str], optional): The days to skip. Defaults to [].
            truncate (bool|int, optional): Whether to truncate the data. Defaults to False.
            lro_kwargs (dict, optional): Keyword arguments for LongRecordingOrganizer. Defaults to {}.
        """

        self.base_folder_path = Path(base_folder_path)
        self.anim_id = anim_id
        self.animal_param = [anim_id]
        self.day_sep = day_sep
        self.read_mode = mode
        self.assume_from_number = assume_from_number

        match mode:
            case "nest":
                self.bin_folder_pattern = self.base_folder_path / f"*{self.anim_id}*" / "*"
            case "concat" | "noday":
                self.bin_folder_pattern = self.base_folder_path / f"*{self.anim_id}*"
                # self.bin_folder_pat = self.base_folder_path / f"*{self.anim_id}*{self.date_format}*"
            case "base":
                self.bin_folder_pattern = self.base_folder_path
            # case 'noday':
            #     self.bin_folder_pat = self.base_folder_path / f"*{self.anim_id}*"
            case _:
                raise ValueError(f"Invalid mode: {mode}")

        self._bin_folders = glob.glob(str(self.bin_folder_pattern))
        # if mode != 'noday':
        #     self.__bin_folders = [x for x in self.__bin_folders if datetime.strptime(Path(x).name, self.date_format)]
        truncate = core.utils.parse_truncate(truncate)
        if truncate:
            warnings.warn(f"AnimalOrganizer will be truncated to the first {truncate} LongRecordings")
            self._bin_folders = self._bin_folders[:truncate]
        self._bin_folders = [x for x in self._bin_folders if not any(y in x for y in skip_days)]
        self.bin_folder_names = [Path(x).name for x in self._bin_folders]
        logging.info(f"bin_folder_pattern: {self.bin_folder_pattern}")
        logging.info(f"self._bin_folders: {self._bin_folders}")
        logging.info(f"self.bin_folder_names: {self.bin_folder_names}")

        if mode == "noday" and len(self._bin_folders) > 1:
            raise ValueError(f"Animal ID '{self.anim_id}' is not unique, found: {', '.join(self._bin_folders)}")
        elif len(self._bin_folders) == 0:
            raise ValueError(f"No files found for animal ID {self.anim_id}")

        animalday_dicts = [
            core.parse_path_to_animalday(e, animal_param=self.animal_param, day_sep=self.day_sep, mode=self.read_mode)
            for e in self._bin_folders
        ]
        self.animaldays = [x["animalday"] for x in animalday_dicts]
        logging.info(f"self.animaldays: {self.animaldays}")

        genotypes = [x["genotype"] for x in animalday_dicts]
        if len(set(genotypes)) > 1:
            warnings.warn(f"Inconsistent genotypes in {genotypes}")
        self.genotype = genotypes[0]
        logging.info(f"self.genotype: {self.genotype}")

        self.long_analyzers: list[core.LongRecordingAnalyzer] = []
        logging.debug(f"Creating {len(self._bin_folders)} LongRecordings")
        self.long_recordings = [core.LongRecordingOrganizer(e, **lro_kwargs) for e in self._bin_folders]

        channel_names = [x.channel_names for x in self.long_recordings]
        if len(set([" ".join(x) for x in channel_names])) > 1:
            warnings.warn(f"Inconsistent channel names in long_recordings: {channel_names}")
        self.channel_names = channel_names[0]
        self.bad_channels_dict = {}

        animal_ids = [x["animal"] for x in animalday_dicts]
        if len(set(animal_ids)) > 1:
            warnings.warn(f"Inconsistent animal IDs in {animal_ids}")
        self.animal_id = animal_ids[0]

        self.features_df: pd.DataFrame = pd.DataFrame()
        self.features_avg_df: pd.DataFrame = pd.DataFrame()

    def convert_colbins_to_rowbins(self, overwrite=False, multiprocess_mode: Literal["dask", "serial"] = "serial"):
        for lrec in tqdm(self.long_recordings, desc="Converting column bins to row bins"):
            lrec.convert_colbins_to_rowbins(overwrite=overwrite, multiprocess_mode=multiprocess_mode)

    def convert_rowbins_to_rec(self, multiprocess_mode: Literal["dask", "serial"] = "serial"):
        for lrec in tqdm(self.long_recordings, desc="Converting row bins to recs"):
            lrec.convert_rowbins_to_rec(multiprocess_mode=multiprocess_mode)

    def cleanup_rec(self):
        for lrec in self.long_recordings:
            lrec.cleanup_rec()

    def compute_bad_channels(self, lof_threshold: float = 1.5):
        for lrec in self.long_recordings:
            lrec.compute_bad_channels(lof_threshold=lof_threshold)
        self.bad_channels_dict = {
            animalday: lrec.bad_channel_names for animalday, lrec in zip(self.animaldays, self.long_recordings)
        }

    def compute_windowed_analysis(
        self,
        features: list[str],
        exclude: list[str] = ["nspike", "lognspike"],
        window_s=4,
        multiprocess_mode: Literal["dask", "serial"] = "serial",
        suppress_short_interval_error=False,
        **kwargs,
    ):
        """Computes windowed analysis of animal recordings. The data is divided into windows (time bins), then features are extracted from each window. The result is
        formatted to a Dataframe and wrapped into a WindowAnalysisResult object.

        Args:
            features (list[str]): List of features to compute. See individual compute_...() functions for output format
            exclude (list[str], optional): List of features to ignore. Will override the features parameter. Defaults to [].
            window_s (int, optional): Length of each window in seconds. Note that some features break with very short window times. Defaults to 4.
            suppress_short_interval_error (bool, optional): If True, suppress ValueError for short intervals between timestamps in resulting WindowAnalysisResult. Useful for aggregated WARs. Defaults to False.

        Raises:
            AttributeError: If a feature's compute_...() function was not implemented, this error will be raised.

        Returns:
            window_analysis_result: a WindowAnalysisResult object
        """
        features = _sanitize_feature_request(features, exclude)

        dataframes = []
        for lrec in self.long_recordings:  # Iterate over all long recordings
            logging.info(f"Computing windowed analysis for {lrec.base_folder_path}")
            lan = core.LongRecordingAnalyzer(lrec, fragment_len_s=window_s)
            if lan.n_fragments == 0:
                logging.warning(f"No fragments found for {lrec.base_folder_path}. Skipping.")
                continue

            logging.debug(f"Processing {lan.n_fragments} fragments")
            miniters = int(lan.n_fragments / 100)
            match multiprocess_mode:
                case "dask":
                    # The last fragment is not included because it makes the dask array ragged
                    logging.debug("Converting LongRecording to numpy array")

                    n_fragments_war = max(lan.n_fragments - 1, 1)
                    first_fragment = lan.get_fragment_np(0)
                    np_fragments = np.empty((n_fragments_war,) + first_fragment.shape, dtype=first_fragment.dtype)
                    logging.debug(f"np_fragments.shape: {np_fragments.shape}")
                    for idx in range(n_fragments_war):
                        np_fragments[idx] = lan.get_fragment_np(idx)

                    # Cache fragments to zarr
                    tmppath, _ = core.cache_fragments_to_zarr(np_fragments, n_fragments_war)
                    del np_fragments

                    logging.debug("Processing metadata serially")
                    metadatas = [self._process_fragment_metadata(idx, lan, window_s) for idx in range(n_fragments_war)]
                    meta_df = pd.DataFrame(metadatas)

                    logging.debug("Processing features in parallel")
                    np_fragments_reconstruct = da.from_zarr(tmppath, chunks=("auto", -1, -1))
                    logging.debug(f"Dask array shape: {np_fragments_reconstruct.shape}")
                    logging.debug(f"Dask array chunks: {np_fragments_reconstruct.chunks}")

                    # Create delayed tasks for each fragment using efficient dependency resolution
                    feature_values = [
                        delayed(FragmentAnalyzer.process_fragment_with_dependencies)(
                            np_fragments_reconstruct[idx], lan.f_s, features, kwargs
                        )
                        for idx in range(n_fragments_war)
                    ]

                    # Compute features in parallel
                    feature_values = dask.compute(*feature_values)

                    # Clean up temp directory after processing
                    logging.debug("Cleaning up temp directory")
                    try:
                        import shutil

                        shutil.rmtree(tmppath)
                    except (OSError, FileNotFoundError) as e:
                        logging.warning(f"Failed to remove temporary directory {tmppath}: {e}")

                    logging.debug("Combining metadata and feature values")
                    feat_df = pd.DataFrame(feature_values)
                    lan_df = pd.concat([meta_df, feat_df], axis=1)

                case _:
                    logging.debug("Processing serially")
                    lan_df = []
                    for idx in tqdm(range(lan.n_fragments), desc="Processing rows", miniters=miniters):
                        lan_df.append(self._process_fragment_serial(idx, features, lan, window_s, kwargs))

            lan_df = pd.DataFrame(lan_df)

            logging.debug("Validating timestamps")
            core.validate_timestamps(lan_df["timestamp"].tolist())
            lan_df = lan_df.sort_values("timestamp").reset_index(drop=True)

            self.long_analyzers.append(lan)
            dataframes.append(lan_df)

        self.features_df = pd.concat(dataframes)
        self.features_df = self.features_df

        self.window_analysis_result = WindowAnalysisResult(
            self.features_df,
            self.animal_id,
            self.genotype,
            self.channel_names,
            self.assume_from_number,
            self.bad_channels_dict,
            suppress_short_interval_error,
        )

        return self.window_analysis_result

    def compute_spike_analysis(self, multiprocess_mode: Literal["dask", "serial"] = "serial"):
        """Compute spike sorting on all long recordings and return a list of SpikeAnalysisResult objects

        Args:
            multiprocess_mode (Literal['dask', 'serial']): Whether to use Dask for parallel processing. Defaults to 'serial'.

        Returns:
            spike_analysis_results: list[SpikeAnalysisResult]. Each SpikeAnalysisResult object corresponds to a LongRecording object,
            typically a different day or recording session.

        Raises:
            ImportError: If mountainsort5 is not available.
        """
        # Check if mountainsort5 is available
        from ..core.analyze_sort import MOUNTAINSORT_AVAILABLE
        if not MOUNTAINSORT_AVAILABLE:
            raise ImportError(
                "Spike analysis requires mountainsort5. Install it with: pip install mountainsort5"
            )
        sars = []
        lrec_sorts = []
        lrec_recs = []
        recs = [lrec.LongRecording for lrec in self.long_recordings]
        logging.info(f"Sorting {len(recs)} recordings")
        for rec in recs:
            if rec.get_total_samples() == 0:
                logging.warning(f"Skipping {rec.__str__()} because it has no samples")
                sortings, recordings = [], []
            else:
                sortings, recordings = core.MountainSortAnalyzer.sort_recording(
                    rec, multiprocess_mode=multiprocess_mode
                )
            lrec_sorts.append(sortings)
            lrec_recs.append(recordings)

        if multiprocess_mode == "dask":
            lrec_sorts = dask.compute(*lrec_sorts)

        lrec_sas = [
            [
                si.create_sorting_analyzer(sorting, recording, sparse=False)
                for sorting, recording in zip(sortings, recordings)
            ]
            for sortings, recordings in zip(lrec_sorts, lrec_recs)
        ]
        sars = [
            SpikeAnalysisResult(
                result_sas=sas,
                result_mne=None,
                animal_id=self.animal_id,
                genotype=self.genotype,
                animal_day=self.animaldays[i],
                bin_folder_name=self.bin_folder_names[i],
                metadata=self.long_recordings[i].meta,
                channel_names=self.channel_names,
                assume_from_number=self.assume_from_number,
            )
            for i, sas in enumerate(lrec_sas)
        ]

        self.spike_analysis_results = sars
        return self.spike_analysis_results

    def _process_fragment_serial(self, idx, features, lan: core.LongRecordingAnalyzer, window_s, kwargs: dict):
        row = self._process_fragment_metadata(idx, lan, window_s)
        row.update(self._process_fragment_features(idx, features, lan, kwargs))
        return row

    def _process_fragment_metadata(self, idx, lan: core.LongRecordingAnalyzer, window_s):
        row = {}

        lan_folder = lan.LongRecording.base_folder_path
        animalday_dict = core.parse_path_to_animalday(
            lan_folder, animal_param=self.animal_param, day_sep=self.day_sep, mode=self.read_mode
        )
        row["animalday"] = animalday_dict["animalday"]
        row["animal"] = animalday_dict["animal"]
        row["day"] = animalday_dict["day"]
        row["genotype"] = animalday_dict["genotype"]
        row["duration"] = lan.LongRecording.get_dur_fragment(window_s, idx)
        row["endfile"] = lan.get_file_end(idx)

        frag_dt = lan.LongRecording.get_datetime_fragment(window_s, idx)
        row["timestamp"] = frag_dt
        row["isday"] = core.is_day(frag_dt)

        return row

    def _process_fragment_features(self, idx, features, lan: core.LongRecordingAnalyzer, kwargs: dict):
        row = {}
        for feat in features:
            func = getattr(lan, f"compute_{feat}")
            if callable(func):
                row[feat] = func(idx, **kwargs)
            else:
                raise AttributeError(f"Invalid function {func}")
        return row

__init__(base_folder_path, anim_id, day_sep=None, mode='concat', assume_from_number=False, skip_days=[], truncate=False, lro_kwargs={})

AnimalOrganizer is used to organize data from a single animal into a format that can be used for analysis. It is used to organize data from a single animal into a format that can be used for analysis.

Parameters:

Name Type Description Default
base_folder_path str

The path to the base folder of the animal data.

required
anim_id str

The ID of the animal. This should correspond to only one animal.

required
day_sep str

Separator for day in folder name. Set to None or empty string to get all folders. Defaults to None.

None
mode Literal['nest', 'concat', 'base', 'noday']

The mode of the AnimalOrganizer. Defaults to "concat". "nest": base_folder_path / animal_id / date_format "concat": base_folder_path / animal_id*date_format "base": base_folder_path "noday": base_folder_path / animal_id

'concat'
assume_from_number bool

Whether to assume the animal ID is a number. Defaults to False.

False
skip_days list[str]

The days to skip. Defaults to [].

[]
truncate bool | int

Whether to truncate the data. Defaults to False.

False
lro_kwargs dict

Keyword arguments for LongRecordingOrganizer. Defaults to {}.

{}
Source code in pythoneeg/visualization/results.py
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
def __init__(
    self,
    base_folder_path,
    anim_id: str,
    day_sep: str | None = None,
    mode: Literal["nest", "concat", "base", "noday"] = "concat",
    assume_from_number=False,
    skip_days: list[str] = [],
    truncate: bool | int = False,
    lro_kwargs: dict = {},
) -> None:
    """
    AnimalOrganizer is used to organize data from a single animal into a format that can be used for analysis.
    It is used to organize data from a single animal into a format that can be used for analysis.

    Args:
        base_folder_path (str): The path to the base folder of the animal data.
        anim_id (str): The ID of the animal. This should correspond to only one animal.
        day_sep (str, optional): Separator for day in folder name. Set to None or empty string to get all folders. Defaults to None.
        mode (Literal["nest", "concat", "base", "noday"], optional): The mode of the AnimalOrganizer. Defaults to "concat".
            "nest": base_folder_path / animal_id / date_format
            "concat": base_folder_path / animal_id*date_format
            "base": base_folder_path
            "noday": base_folder_path / animal_id
        assume_from_number (bool, optional): Whether to assume the animal ID is a number. Defaults to False.
        skip_days (list[str], optional): The days to skip. Defaults to [].
        truncate (bool|int, optional): Whether to truncate the data. Defaults to False.
        lro_kwargs (dict, optional): Keyword arguments for LongRecordingOrganizer. Defaults to {}.
    """

    self.base_folder_path = Path(base_folder_path)
    self.anim_id = anim_id
    self.animal_param = [anim_id]
    self.day_sep = day_sep
    self.read_mode = mode
    self.assume_from_number = assume_from_number

    match mode:
        case "nest":
            self.bin_folder_pattern = self.base_folder_path / f"*{self.anim_id}*" / "*"
        case "concat" | "noday":
            self.bin_folder_pattern = self.base_folder_path / f"*{self.anim_id}*"
            # self.bin_folder_pat = self.base_folder_path / f"*{self.anim_id}*{self.date_format}*"
        case "base":
            self.bin_folder_pattern = self.base_folder_path
        # case 'noday':
        #     self.bin_folder_pat = self.base_folder_path / f"*{self.anim_id}*"
        case _:
            raise ValueError(f"Invalid mode: {mode}")

    self._bin_folders = glob.glob(str(self.bin_folder_pattern))
    # if mode != 'noday':
    #     self.__bin_folders = [x for x in self.__bin_folders if datetime.strptime(Path(x).name, self.date_format)]
    truncate = core.utils.parse_truncate(truncate)
    if truncate:
        warnings.warn(f"AnimalOrganizer will be truncated to the first {truncate} LongRecordings")
        self._bin_folders = self._bin_folders[:truncate]
    self._bin_folders = [x for x in self._bin_folders if not any(y in x for y in skip_days)]
    self.bin_folder_names = [Path(x).name for x in self._bin_folders]
    logging.info(f"bin_folder_pattern: {self.bin_folder_pattern}")
    logging.info(f"self._bin_folders: {self._bin_folders}")
    logging.info(f"self.bin_folder_names: {self.bin_folder_names}")

    if mode == "noday" and len(self._bin_folders) > 1:
        raise ValueError(f"Animal ID '{self.anim_id}' is not unique, found: {', '.join(self._bin_folders)}")
    elif len(self._bin_folders) == 0:
        raise ValueError(f"No files found for animal ID {self.anim_id}")

    animalday_dicts = [
        core.parse_path_to_animalday(e, animal_param=self.animal_param, day_sep=self.day_sep, mode=self.read_mode)
        for e in self._bin_folders
    ]
    self.animaldays = [x["animalday"] for x in animalday_dicts]
    logging.info(f"self.animaldays: {self.animaldays}")

    genotypes = [x["genotype"] for x in animalday_dicts]
    if len(set(genotypes)) > 1:
        warnings.warn(f"Inconsistent genotypes in {genotypes}")
    self.genotype = genotypes[0]
    logging.info(f"self.genotype: {self.genotype}")

    self.long_analyzers: list[core.LongRecordingAnalyzer] = []
    logging.debug(f"Creating {len(self._bin_folders)} LongRecordings")
    self.long_recordings = [core.LongRecordingOrganizer(e, **lro_kwargs) for e in self._bin_folders]

    channel_names = [x.channel_names for x in self.long_recordings]
    if len(set([" ".join(x) for x in channel_names])) > 1:
        warnings.warn(f"Inconsistent channel names in long_recordings: {channel_names}")
    self.channel_names = channel_names[0]
    self.bad_channels_dict = {}

    animal_ids = [x["animal"] for x in animalday_dicts]
    if len(set(animal_ids)) > 1:
        warnings.warn(f"Inconsistent animal IDs in {animal_ids}")
    self.animal_id = animal_ids[0]

    self.features_df: pd.DataFrame = pd.DataFrame()
    self.features_avg_df: pd.DataFrame = pd.DataFrame()

compute_spike_analysis(multiprocess_mode='serial')

Compute spike sorting on all long recordings and return a list of SpikeAnalysisResult objects

Parameters:

Name Type Description Default
multiprocess_mode Literal['dask', 'serial']

Whether to use Dask for parallel processing. Defaults to 'serial'.

'serial'

Returns:

Name Type Description
spike_analysis_results

list[SpikeAnalysisResult]. Each SpikeAnalysisResult object corresponds to a LongRecording object,

typically a different day or recording session.

Raises:

Type Description
ImportError

If mountainsort5 is not available.

Source code in pythoneeg/visualization/results.py
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
def compute_spike_analysis(self, multiprocess_mode: Literal["dask", "serial"] = "serial"):
    """Compute spike sorting on all long recordings and return a list of SpikeAnalysisResult objects

    Args:
        multiprocess_mode (Literal['dask', 'serial']): Whether to use Dask for parallel processing. Defaults to 'serial'.

    Returns:
        spike_analysis_results: list[SpikeAnalysisResult]. Each SpikeAnalysisResult object corresponds to a LongRecording object,
        typically a different day or recording session.

    Raises:
        ImportError: If mountainsort5 is not available.
    """
    # Check if mountainsort5 is available
    from ..core.analyze_sort import MOUNTAINSORT_AVAILABLE
    if not MOUNTAINSORT_AVAILABLE:
        raise ImportError(
            "Spike analysis requires mountainsort5. Install it with: pip install mountainsort5"
        )
    sars = []
    lrec_sorts = []
    lrec_recs = []
    recs = [lrec.LongRecording for lrec in self.long_recordings]
    logging.info(f"Sorting {len(recs)} recordings")
    for rec in recs:
        if rec.get_total_samples() == 0:
            logging.warning(f"Skipping {rec.__str__()} because it has no samples")
            sortings, recordings = [], []
        else:
            sortings, recordings = core.MountainSortAnalyzer.sort_recording(
                rec, multiprocess_mode=multiprocess_mode
            )
        lrec_sorts.append(sortings)
        lrec_recs.append(recordings)

    if multiprocess_mode == "dask":
        lrec_sorts = dask.compute(*lrec_sorts)

    lrec_sas = [
        [
            si.create_sorting_analyzer(sorting, recording, sparse=False)
            for sorting, recording in zip(sortings, recordings)
        ]
        for sortings, recordings in zip(lrec_sorts, lrec_recs)
    ]
    sars = [
        SpikeAnalysisResult(
            result_sas=sas,
            result_mne=None,
            animal_id=self.animal_id,
            genotype=self.genotype,
            animal_day=self.animaldays[i],
            bin_folder_name=self.bin_folder_names[i],
            metadata=self.long_recordings[i].meta,
            channel_names=self.channel_names,
            assume_from_number=self.assume_from_number,
        )
        for i, sas in enumerate(lrec_sas)
    ]

    self.spike_analysis_results = sars
    return self.spike_analysis_results

compute_windowed_analysis(features, exclude=['nspike', 'lognspike'], window_s=4, multiprocess_mode='serial', suppress_short_interval_error=False, **kwargs)

Computes windowed analysis of animal recordings. The data is divided into windows (time bins), then features are extracted from each window. The result is formatted to a Dataframe and wrapped into a WindowAnalysisResult object.

Parameters:

Name Type Description Default
features list[str]

List of features to compute. See individual compute_...() functions for output format

required
exclude list[str]

List of features to ignore. Will override the features parameter. Defaults to [].

['nspike', 'lognspike']
window_s int

Length of each window in seconds. Note that some features break with very short window times. Defaults to 4.

4
suppress_short_interval_error bool

If True, suppress ValueError for short intervals between timestamps in resulting WindowAnalysisResult. Useful for aggregated WARs. Defaults to False.

False

Raises:

Type Description
AttributeError

If a feature's compute_...() function was not implemented, this error will be raised.

Returns:

Name Type Description
window_analysis_result

a WindowAnalysisResult object

Source code in pythoneeg/visualization/results.py
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
def compute_windowed_analysis(
    self,
    features: list[str],
    exclude: list[str] = ["nspike", "lognspike"],
    window_s=4,
    multiprocess_mode: Literal["dask", "serial"] = "serial",
    suppress_short_interval_error=False,
    **kwargs,
):
    """Computes windowed analysis of animal recordings. The data is divided into windows (time bins), then features are extracted from each window. The result is
    formatted to a Dataframe and wrapped into a WindowAnalysisResult object.

    Args:
        features (list[str]): List of features to compute. See individual compute_...() functions for output format
        exclude (list[str], optional): List of features to ignore. Will override the features parameter. Defaults to [].
        window_s (int, optional): Length of each window in seconds. Note that some features break with very short window times. Defaults to 4.
        suppress_short_interval_error (bool, optional): If True, suppress ValueError for short intervals between timestamps in resulting WindowAnalysisResult. Useful for aggregated WARs. Defaults to False.

    Raises:
        AttributeError: If a feature's compute_...() function was not implemented, this error will be raised.

    Returns:
        window_analysis_result: a WindowAnalysisResult object
    """
    features = _sanitize_feature_request(features, exclude)

    dataframes = []
    for lrec in self.long_recordings:  # Iterate over all long recordings
        logging.info(f"Computing windowed analysis for {lrec.base_folder_path}")
        lan = core.LongRecordingAnalyzer(lrec, fragment_len_s=window_s)
        if lan.n_fragments == 0:
            logging.warning(f"No fragments found for {lrec.base_folder_path}. Skipping.")
            continue

        logging.debug(f"Processing {lan.n_fragments} fragments")
        miniters = int(lan.n_fragments / 100)
        match multiprocess_mode:
            case "dask":
                # The last fragment is not included because it makes the dask array ragged
                logging.debug("Converting LongRecording to numpy array")

                n_fragments_war = max(lan.n_fragments - 1, 1)
                first_fragment = lan.get_fragment_np(0)
                np_fragments = np.empty((n_fragments_war,) + first_fragment.shape, dtype=first_fragment.dtype)
                logging.debug(f"np_fragments.shape: {np_fragments.shape}")
                for idx in range(n_fragments_war):
                    np_fragments[idx] = lan.get_fragment_np(idx)

                # Cache fragments to zarr
                tmppath, _ = core.cache_fragments_to_zarr(np_fragments, n_fragments_war)
                del np_fragments

                logging.debug("Processing metadata serially")
                metadatas = [self._process_fragment_metadata(idx, lan, window_s) for idx in range(n_fragments_war)]
                meta_df = pd.DataFrame(metadatas)

                logging.debug("Processing features in parallel")
                np_fragments_reconstruct = da.from_zarr(tmppath, chunks=("auto", -1, -1))
                logging.debug(f"Dask array shape: {np_fragments_reconstruct.shape}")
                logging.debug(f"Dask array chunks: {np_fragments_reconstruct.chunks}")

                # Create delayed tasks for each fragment using efficient dependency resolution
                feature_values = [
                    delayed(FragmentAnalyzer.process_fragment_with_dependencies)(
                        np_fragments_reconstruct[idx], lan.f_s, features, kwargs
                    )
                    for idx in range(n_fragments_war)
                ]

                # Compute features in parallel
                feature_values = dask.compute(*feature_values)

                # Clean up temp directory after processing
                logging.debug("Cleaning up temp directory")
                try:
                    import shutil

                    shutil.rmtree(tmppath)
                except (OSError, FileNotFoundError) as e:
                    logging.warning(f"Failed to remove temporary directory {tmppath}: {e}")

                logging.debug("Combining metadata and feature values")
                feat_df = pd.DataFrame(feature_values)
                lan_df = pd.concat([meta_df, feat_df], axis=1)

            case _:
                logging.debug("Processing serially")
                lan_df = []
                for idx in tqdm(range(lan.n_fragments), desc="Processing rows", miniters=miniters):
                    lan_df.append(self._process_fragment_serial(idx, features, lan, window_s, kwargs))

        lan_df = pd.DataFrame(lan_df)

        logging.debug("Validating timestamps")
        core.validate_timestamps(lan_df["timestamp"].tolist())
        lan_df = lan_df.sort_values("timestamp").reset_index(drop=True)

        self.long_analyzers.append(lan)
        dataframes.append(lan_df)

    self.features_df = pd.concat(dataframes)
    self.features_df = self.features_df

    self.window_analysis_result = WindowAnalysisResult(
        self.features_df,
        self.animal_id,
        self.genotype,
        self.channel_names,
        self.assume_from_number,
        self.bad_channels_dict,
        suppress_short_interval_error,
    )

    return self.window_analysis_result

SpikeAnalysisResult

Bases: AnimalFeatureParser

Source code in pythoneeg/visualization/results.py
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
class SpikeAnalysisResult(AnimalFeatureParser):
    def __init__(
        self,
        result_sas: list[si.SortingAnalyzer],
        result_mne: mne.io.RawArray = None,
        animal_id: str = None,
        genotype: str = None,
        animal_day: str = None,
        bin_folder_name: str = None,
        metadata: core.DDFBinaryMetadata = None,
        channel_names: list[str] = None,
        assume_from_number=False,
    ) -> None:
        """
        Args:
            result (list[si.SortingAnalyzer]): Result comes from AnimalOrganizer.compute_spike_analysis(). Each SortingAnalyzer is a single channel.
            animal_id (str, optional): Identifier for the animal where result was computed from. Defaults to None.
            genotype (str, optional): Genotype of animal. Defaults to None.
            channel_names (list[str], optional): List of channel names. Defaults to None.
            assume_channels (bool, optional): If true, assumes channel names according to AnimalFeatureParser.DEFAULT_CHNUM_TO_NAME. Defaults to False.
        """
        self.result_sas = result_sas
        self.result_mne = result_mne
        if (result_mne is None) == (result_sas is None):
            raise ValueError("Exactly one of result_sas or result_mne must be provided")
        self.animal_id = animal_id
        self.genotype = genotype
        self.animal_day = animal_day
        self.bin_folder_name = bin_folder_name
        self.metadata = metadata
        self.channel_names = channel_names
        self.assume_from_number = assume_from_number
        self.channel_abbrevs = [
            core.parse_chname_to_abbrev(x, assume_from_number=assume_from_number) for x in self.channel_names
        ]

        logging.info(f"Channel names: \t{self.channel_names}")
        logging.info(f"Channel abbreviations: \t{self.channel_abbrevs}")

    def convert_to_mne(self, chunk_len: float = 60, save_raw=True) -> mne.io.RawArray:
        if self.result_mne is None:
            result_mne = SpikeAnalysisResult.convert_sas_to_mne(self.result_sas, chunk_len)
            if save_raw:
                self.result_mne = result_mne
            else:
                return result_mne
        return self.result_mne

    def save_fif_and_json(
        self,
        folder: str | Path,
        convert_to_mne=True,
        make_folder=True,
        slugify_filebase=True,
        save_abbrevs_as_chnames=False,
        overwrite=False,
    ):
        """Archive spike analysis result into the folder specified, as a fif and json file.

        Args:
            folder (str | Path): Destination folder to save results to
            convert_to_mne (bool, optional): If True, convert the SortingAnalyzers to a MNE RawArray if self.result_mne is None. Defaults to True.
            make_folder (bool, optional): If True, create the folder if it doesn't exist. Defaults to True.
            slugify_filebase (bool, optional): If True, slugify the filebase (replace special characters). Defaults to True.
            save_abbrevs_as_chnames (bool, optional): If True, save the channel abbreviations as the channel names in the json file. Defaults to False.
            overwrite (bool, optional): If True, overwrite the existing files. Defaults to False.
        """
        if self.result_mne is None:
            if convert_to_mne:
                result_mne = self.convert_to_mne(save_raw=True)
                if result_mne is None:
                    warnings.warn("No SortingAnalyzers found, skipping saving")
                    return
            else:
                raise ValueError("No MNE RawArray found, and convert_to_mne is False. Run convert_to_mne() first.")
        else:
            result_mne = self.result_mne

        folder = Path(folder)
        if make_folder:
            folder.mkdir(parents=True, exist_ok=True)

        if slugify_filebase:
            filebase = folder / slugify(f"{self.animal_id}-{self.genotype}-{self.animal_day}")
        else:
            filebase = folder / f"{self.animal_id}-{self.genotype}-{self.animal_day}"
        filebase = str(filebase)

        if not overwrite:
            if filebase + ".json" in folder.glob("*.json"):
                raise FileExistsError(f"File {filebase}.json already exists")
            if filebase + ".fif" in folder.glob("*.fif"):
                raise FileExistsError(f"File {filebase}.fif already exists")
        else:
            for f in folder.glob("*"):
                f.unlink()
        result_mne.save(filebase + "-raw.fif", overwrite=overwrite)
        del result_mne

        json_dict = {
            "animal_id": self.animal_id,
            "genotype": self.genotype,
            "animal_day": self.animal_day,
            "bin_folder_name": self.bin_folder_name,
            "metadata": self.metadata.metadata_path,
            "channel_names": self.channel_abbrevs if save_abbrevs_as_chnames else self.channel_names,
            "assume_from_number": False if save_abbrevs_as_chnames else self.assume_from_number,
        }
        with open(filebase + ".json", "w") as f:
            json.dump(json_dict, f, indent=2)

    @classmethod
    def load_fif_and_json(cls, folder: str | Path):
        folder = Path(folder)
        if not folder.exists():
            raise ValueError(f"Folder {folder} does not exist")

        fif_files = list(folder.glob("*.fif"))  # there may be more than 1 fif file
        json_files = list(folder.glob("*.json"))

        if len(json_files) != 1:
            raise ValueError(f"Expected exactly one json file in {folder}")

        fif_path = fif_files[0]
        json_path = json_files[0]

        with open(json_path, "r") as f:
            data = json.load(f)
        # data['metadata'] = core.DDFBinaryMetadata(data['metadata'])
        data["result_mne"] = mne.io.read_raw_fif(fif_path)
        data["result_sas"] = None
        return cls(**data)

    @staticmethod
    def convert_sas_to_mne(sas: list[si.SortingAnalyzer], chunk_len: float = 60) -> mne.io.RawArray:
        """Convert a list of SortingAnalyzers to a MNE RawArray.

        Args:
            sas (list[si.SortingAnalyzer]): The list of SortingAnalyzers to convert
            chunk_len (float, optional): The length of the chunks to use for the conversion. Defaults to 60.

        Returns:
            mne.io.RawArray: The converted RawArray, with spikes labeled as annotations
        """
        if len(sas) == 0:
            return None

        # Check that all SortingAnalyzers have the same sampling frequency
        sfreqs = [sa.recording.get_sampling_frequency() for sa in sas]
        if not all(sf == sfreqs[0] for sf in sfreqs):
            raise ValueError(f"All SortingAnalyzers must have the same sampling frequency. Got frequencies: {sfreqs}")

        # Preallocate data array
        total_frames = int(sas[0].recording.get_duration() * sfreqs[0])
        n_channels = len(sas)
        data = np.empty((n_channels, total_frames))
        logging.debug(f"Data shape: {data.shape}")

        # Fill data array one channel at a time
        for i, sa in enumerate(sas):
            logging.debug(f"Converting channel {i + 1} of {n_channels}")
            data[i, :] = SpikeAnalysisResult.convert_sa_to_np(sa, chunk_len)

        channel_names = [str(sa.recording.get_channel_ids().item()) for sa in sas]
        logging.debug(f"Channel names: {channel_names}")
        sfreq = sfreqs[0]

        # Extract spike times for each unit and create annotations
        onset = []
        description = []
        for sa in sas:
            for unit_id in sa.sorting.get_unit_ids():
                spike_train = sa.sorting.get_unit_spike_train(unit_id)
                # Convert to seconds and filter to recording duration
                spike_times = spike_train / sa.sorting.get_sampling_frequency()
                mask = spike_times < sa.recording.get_duration()
                spike_times = spike_times[mask]

                # Create annotation for each spike
                onset.extend(spike_times)
                description.extend(
                    [sa.recording.get_channel_ids().item()] * len(spike_times)
                )  # collapse all units into 1 spike train
        annotations = mne.Annotations(onset, duration=0, description=description)

        info = mne.create_info(ch_names=channel_names, sfreq=sfreq, ch_types="eeg")
        raw = mne.io.RawArray(data=data, info=info)
        raw = raw.set_annotations(annotations)
        return raw

    @staticmethod
    def convert_sa_to_np(sa: si.SortingAnalyzer, chunk_len: float = 60) -> np.ndarray:
        """Convert a SortingAnalyzer to an MNE RawArray.

        Args:
            sa (si.SortingAnalyzer): The SortingAnalyzer to convert. Must have only 1 channel.
            chunk_len (float, optional): The length of the chunks to use for the conversion. Defaults to 60.
        Returns:
            np.ndarray: The converted traces
        """
        # Check that SortingAnalyzer only has 1 channel
        if len(sa.recording.get_channel_ids()) != 1:
            raise ValueError(
                f"Expected SortingAnalyzer to have 1 channel, but got {len(sa.recording.get_channel_ids())} channels"
            )

        rec = sa.recording
        logging.debug(f"Recording info: {rec}")

        # Calculate total number of frames and chunks
        total_frames = int(rec.get_duration() * rec.get_sampling_frequency())
        frames_per_chunk = round(chunk_len * rec.get_sampling_frequency())
        n_chunks = total_frames // frames_per_chunk

        traces = np.empty(total_frames)

        for j in range(n_chunks):
            start_frame = j * frames_per_chunk
            if j == n_chunks - 1:
                end_frame = total_frames
            else:
                end_frame = (j + 1) * frames_per_chunk
            traces[start_frame:end_frame] = rec.get_traces(
                start_frame=start_frame, end_frame=end_frame, return_scaled=True
            ).flatten()
        traces *= 1e-6  # convert from uV to V
        return traces

__init__(result_sas, result_mne=None, animal_id=None, genotype=None, animal_day=None, bin_folder_name=None, metadata=None, channel_names=None, assume_from_number=False)

Parameters:

Name Type Description Default
result list[SortingAnalyzer]

Result comes from AnimalOrganizer.compute_spike_analysis(). Each SortingAnalyzer is a single channel.

required
animal_id str

Identifier for the animal where result was computed from. Defaults to None.

None
genotype str

Genotype of animal. Defaults to None.

None
channel_names list[str]

List of channel names. Defaults to None.

None
assume_channels bool

If true, assumes channel names according to AnimalFeatureParser.DEFAULT_CHNUM_TO_NAME. Defaults to False.

required
Source code in pythoneeg/visualization/results.py
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
def __init__(
    self,
    result_sas: list[si.SortingAnalyzer],
    result_mne: mne.io.RawArray = None,
    animal_id: str = None,
    genotype: str = None,
    animal_day: str = None,
    bin_folder_name: str = None,
    metadata: core.DDFBinaryMetadata = None,
    channel_names: list[str] = None,
    assume_from_number=False,
) -> None:
    """
    Args:
        result (list[si.SortingAnalyzer]): Result comes from AnimalOrganizer.compute_spike_analysis(). Each SortingAnalyzer is a single channel.
        animal_id (str, optional): Identifier for the animal where result was computed from. Defaults to None.
        genotype (str, optional): Genotype of animal. Defaults to None.
        channel_names (list[str], optional): List of channel names. Defaults to None.
        assume_channels (bool, optional): If true, assumes channel names according to AnimalFeatureParser.DEFAULT_CHNUM_TO_NAME. Defaults to False.
    """
    self.result_sas = result_sas
    self.result_mne = result_mne
    if (result_mne is None) == (result_sas is None):
        raise ValueError("Exactly one of result_sas or result_mne must be provided")
    self.animal_id = animal_id
    self.genotype = genotype
    self.animal_day = animal_day
    self.bin_folder_name = bin_folder_name
    self.metadata = metadata
    self.channel_names = channel_names
    self.assume_from_number = assume_from_number
    self.channel_abbrevs = [
        core.parse_chname_to_abbrev(x, assume_from_number=assume_from_number) for x in self.channel_names
    ]

    logging.info(f"Channel names: \t{self.channel_names}")
    logging.info(f"Channel abbreviations: \t{self.channel_abbrevs}")

convert_sa_to_np(sa, chunk_len=60) staticmethod

Convert a SortingAnalyzer to an MNE RawArray.

Parameters:

Name Type Description Default
sa SortingAnalyzer

The SortingAnalyzer to convert. Must have only 1 channel.

required
chunk_len float

The length of the chunks to use for the conversion. Defaults to 60.

60

Returns: np.ndarray: The converted traces

Source code in pythoneeg/visualization/results.py
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
@staticmethod
def convert_sa_to_np(sa: si.SortingAnalyzer, chunk_len: float = 60) -> np.ndarray:
    """Convert a SortingAnalyzer to an MNE RawArray.

    Args:
        sa (si.SortingAnalyzer): The SortingAnalyzer to convert. Must have only 1 channel.
        chunk_len (float, optional): The length of the chunks to use for the conversion. Defaults to 60.
    Returns:
        np.ndarray: The converted traces
    """
    # Check that SortingAnalyzer only has 1 channel
    if len(sa.recording.get_channel_ids()) != 1:
        raise ValueError(
            f"Expected SortingAnalyzer to have 1 channel, but got {len(sa.recording.get_channel_ids())} channels"
        )

    rec = sa.recording
    logging.debug(f"Recording info: {rec}")

    # Calculate total number of frames and chunks
    total_frames = int(rec.get_duration() * rec.get_sampling_frequency())
    frames_per_chunk = round(chunk_len * rec.get_sampling_frequency())
    n_chunks = total_frames // frames_per_chunk

    traces = np.empty(total_frames)

    for j in range(n_chunks):
        start_frame = j * frames_per_chunk
        if j == n_chunks - 1:
            end_frame = total_frames
        else:
            end_frame = (j + 1) * frames_per_chunk
        traces[start_frame:end_frame] = rec.get_traces(
            start_frame=start_frame, end_frame=end_frame, return_scaled=True
        ).flatten()
    traces *= 1e-6  # convert from uV to V
    return traces

convert_sas_to_mne(sas, chunk_len=60) staticmethod

Convert a list of SortingAnalyzers to a MNE RawArray.

Parameters:

Name Type Description Default
sas list[SortingAnalyzer]

The list of SortingAnalyzers to convert

required
chunk_len float

The length of the chunks to use for the conversion. Defaults to 60.

60

Returns:

Type Description
RawArray

mne.io.RawArray: The converted RawArray, with spikes labeled as annotations

Source code in pythoneeg/visualization/results.py
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
@staticmethod
def convert_sas_to_mne(sas: list[si.SortingAnalyzer], chunk_len: float = 60) -> mne.io.RawArray:
    """Convert a list of SortingAnalyzers to a MNE RawArray.

    Args:
        sas (list[si.SortingAnalyzer]): The list of SortingAnalyzers to convert
        chunk_len (float, optional): The length of the chunks to use for the conversion. Defaults to 60.

    Returns:
        mne.io.RawArray: The converted RawArray, with spikes labeled as annotations
    """
    if len(sas) == 0:
        return None

    # Check that all SortingAnalyzers have the same sampling frequency
    sfreqs = [sa.recording.get_sampling_frequency() for sa in sas]
    if not all(sf == sfreqs[0] for sf in sfreqs):
        raise ValueError(f"All SortingAnalyzers must have the same sampling frequency. Got frequencies: {sfreqs}")

    # Preallocate data array
    total_frames = int(sas[0].recording.get_duration() * sfreqs[0])
    n_channels = len(sas)
    data = np.empty((n_channels, total_frames))
    logging.debug(f"Data shape: {data.shape}")

    # Fill data array one channel at a time
    for i, sa in enumerate(sas):
        logging.debug(f"Converting channel {i + 1} of {n_channels}")
        data[i, :] = SpikeAnalysisResult.convert_sa_to_np(sa, chunk_len)

    channel_names = [str(sa.recording.get_channel_ids().item()) for sa in sas]
    logging.debug(f"Channel names: {channel_names}")
    sfreq = sfreqs[0]

    # Extract spike times for each unit and create annotations
    onset = []
    description = []
    for sa in sas:
        for unit_id in sa.sorting.get_unit_ids():
            spike_train = sa.sorting.get_unit_spike_train(unit_id)
            # Convert to seconds and filter to recording duration
            spike_times = spike_train / sa.sorting.get_sampling_frequency()
            mask = spike_times < sa.recording.get_duration()
            spike_times = spike_times[mask]

            # Create annotation for each spike
            onset.extend(spike_times)
            description.extend(
                [sa.recording.get_channel_ids().item()] * len(spike_times)
            )  # collapse all units into 1 spike train
    annotations = mne.Annotations(onset, duration=0, description=description)

    info = mne.create_info(ch_names=channel_names, sfreq=sfreq, ch_types="eeg")
    raw = mne.io.RawArray(data=data, info=info)
    raw = raw.set_annotations(annotations)
    return raw

save_fif_and_json(folder, convert_to_mne=True, make_folder=True, slugify_filebase=True, save_abbrevs_as_chnames=False, overwrite=False)

Archive spike analysis result into the folder specified, as a fif and json file.

Parameters:

Name Type Description Default
folder str | Path

Destination folder to save results to

required
convert_to_mne bool

If True, convert the SortingAnalyzers to a MNE RawArray if self.result_mne is None. Defaults to True.

True
make_folder bool

If True, create the folder if it doesn't exist. Defaults to True.

True
slugify_filebase bool

If True, slugify the filebase (replace special characters). Defaults to True.

True
save_abbrevs_as_chnames bool

If True, save the channel abbreviations as the channel names in the json file. Defaults to False.

False
overwrite bool

If True, overwrite the existing files. Defaults to False.

False
Source code in pythoneeg/visualization/results.py
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
def save_fif_and_json(
    self,
    folder: str | Path,
    convert_to_mne=True,
    make_folder=True,
    slugify_filebase=True,
    save_abbrevs_as_chnames=False,
    overwrite=False,
):
    """Archive spike analysis result into the folder specified, as a fif and json file.

    Args:
        folder (str | Path): Destination folder to save results to
        convert_to_mne (bool, optional): If True, convert the SortingAnalyzers to a MNE RawArray if self.result_mne is None. Defaults to True.
        make_folder (bool, optional): If True, create the folder if it doesn't exist. Defaults to True.
        slugify_filebase (bool, optional): If True, slugify the filebase (replace special characters). Defaults to True.
        save_abbrevs_as_chnames (bool, optional): If True, save the channel abbreviations as the channel names in the json file. Defaults to False.
        overwrite (bool, optional): If True, overwrite the existing files. Defaults to False.
    """
    if self.result_mne is None:
        if convert_to_mne:
            result_mne = self.convert_to_mne(save_raw=True)
            if result_mne is None:
                warnings.warn("No SortingAnalyzers found, skipping saving")
                return
        else:
            raise ValueError("No MNE RawArray found, and convert_to_mne is False. Run convert_to_mne() first.")
    else:
        result_mne = self.result_mne

    folder = Path(folder)
    if make_folder:
        folder.mkdir(parents=True, exist_ok=True)

    if slugify_filebase:
        filebase = folder / slugify(f"{self.animal_id}-{self.genotype}-{self.animal_day}")
    else:
        filebase = folder / f"{self.animal_id}-{self.genotype}-{self.animal_day}"
    filebase = str(filebase)

    if not overwrite:
        if filebase + ".json" in folder.glob("*.json"):
            raise FileExistsError(f"File {filebase}.json already exists")
        if filebase + ".fif" in folder.glob("*.fif"):
            raise FileExistsError(f"File {filebase}.fif already exists")
    else:
        for f in folder.glob("*"):
            f.unlink()
    result_mne.save(filebase + "-raw.fif", overwrite=overwrite)
    del result_mne

    json_dict = {
        "animal_id": self.animal_id,
        "genotype": self.genotype,
        "animal_day": self.animal_day,
        "bin_folder_name": self.bin_folder_name,
        "metadata": self.metadata.metadata_path,
        "channel_names": self.channel_abbrevs if save_abbrevs_as_chnames else self.channel_names,
        "assume_from_number": False if save_abbrevs_as_chnames else self.assume_from_number,
    }
    with open(filebase + ".json", "w") as f:
        json.dump(json_dict, f, indent=2)

WindowAnalysisResult

Bases: AnimalFeatureParser

Wrapper for output of windowed analysis. Has useful functions like group-wise and global averaging, filtering, and saving

Source code in pythoneeg/visualization/results.py
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
class WindowAnalysisResult(AnimalFeatureParser):
    """
    Wrapper for output of windowed analysis. Has useful functions like group-wise and global averaging, filtering, and saving
    """

    def __init__(
        self,
        result: pd.DataFrame,
        animal_id: str = None,
        genotype: str = None,
        channel_names: list[str] = None,
        assume_from_number=False,
        bad_channels_dict: dict[str, list[str]] = {},
        suppress_short_interval_error=False,
    ) -> None:
        """
        Args:
            result (pd.DataFrame): Result comes from AnimalOrganizer.compute_windowed_analysis()
            animal_id (str, optional): Identifier for the animal where result was computed from. Defaults to None.
            genotype (str, optional): Genotype of animal. Defaults to None.
            channel_names (list[str], optional): List of channel names. Defaults to None.
            assume_channels (bool, optional): If true, assumes channel names according to AnimalFeatureParser.DEFAULT_CHNUM_TO_NAME. Defaults to False.
            bad_channels_dict (dict[str, list[str]], optional): Dictionary of channels to reject for each recording session. Defaults to {}.
            suppress_short_interval_error (bool, optional): If True, suppress ValueError for short intervals between timestamps. Useful for aggregated WARs with large window sizes. Defaults to False.
        """
        self.result = result
        self.animal_id = animal_id
        self.genotype = genotype
        self.channel_names = channel_names
        self.assume_from_number = assume_from_number
        self.bad_channels_dict = bad_channels_dict
        self.suppress_short_interval_error = suppress_short_interval_error

        self.__update_instance_vars()

        print(f"Channel names: \t{self.channel_names}")
        print(f"Channel abbreviations: \t{self.channel_abbrevs}")

    def __str__(self) -> str:
        return f"{self.animaldays}"

    def __update_instance_vars(self):
        """Run after updating self.result, or other init values"""
        if "index" in self.result.columns:
            warnings.warn("Dropping column 'index'")
            self.result = self.result.drop(columns=["index"])

        # Check if timestamps are sorted and sort if needed
        if "timestamp" in self.result.columns:
            if not self.result["timestamp"].is_monotonic_increasing:
                warnings.warn("Timestamps are not sorted. Sorting result DataFrame by timestamp.")
                self.result = self.result.sort_values("timestamp")

        # Check for unusually short intervals between timestamps
        if "timestamp" in self.result.columns and "duration" in self.result.columns:
            median_duration = self.result["duration"].median()
            timestamp_diffs = self.result["timestamp"].diff()
            short_intervals = timestamp_diffs < pd.Timedelta(seconds=median_duration)

            # Skip first row since diff() produces NaT
            short_intervals = short_intervals[1:]

            if short_intervals.any():
                n_short = short_intervals.sum()
                pct_short = (n_short / len(short_intervals)) * 100

                warning_msg = (
                    f"Found {n_short} intervals ({pct_short:.1f}%) between timestamps "
                    f"that are shorter than the median duration of {median_duration:.1f}s"
                )

                if pct_short > 1.0 and not self.suppress_short_interval_error:  # More than 1% of intervals are short
                    raise ValueError(warning_msg)
                elif not self.suppress_short_interval_error:
                    warnings.warn(warning_msg)

        if "animal" in self.result.columns:
            unique_animals = self.result["animal"].unique()
            if len(unique_animals) > 1:
                raise ValueError(f"Multiple animals found in result: {unique_animals}")
            if unique_animals[0] != self.animal_id:
                raise ValueError(
                    f"Animal ID mismatch: result has {unique_animals[0]}, but self.animal_id is {self.animal_id}"
                )

        self._feature_columns = [x for x in self.result.columns if x in constants.FEATURES]
        self._nonfeature_columns = [x for x in self.result.columns if x not in constants.FEATURES]
        self.animaldays = self.result.loc[:, "animalday"].unique()

        self.channel_abbrevs = [
            core.parse_chname_to_abbrev(x, assume_from_number=self.assume_from_number) for x in self.channel_names
        ]

    def reorder_and_pad_channels(
        self, target_channels: list[str], use_abbrevs: bool = True, inplace: bool = True
    ) -> pd.DataFrame:
        """Reorder and pad channels to match a target channel list.

        This method ensures that the data has a consistent channel order and structure
        by reordering existing channels and padding missing channels with NaNs.

        Args:
            target_channels (list[str]): List of target channel names to match
            use_abbrevs (bool, optional): If True, target channel names are read as channel abbreviations instead of channel names. Defaults to True.
            inplace (bool, optional): If True, modify the result in place. Defaults to True.
        Returns:
            pd.DataFrame: DataFrame with reordered and padded channels
        """
        duplicates = [ch for ch in target_channels if target_channels.count(ch) > 1]
        if duplicates:
            raise ValueError(f"Target channels must be unique. Found duplicates: {duplicates}")

        result = self.result.copy()

        channel_map = {ch: i for i, ch in enumerate(target_channels)}
        channel_names = self.channel_names if not use_abbrevs else self.channel_abbrevs

        valid_channels = [ch for ch in channel_names if ch in channel_map]
        if not valid_channels:
            warnings.warn(
                f"None of the channel names {channel_names} were found in target channels {target_channels}. Is use_abbrevs correctly set?"
            )

        for feature in self._feature_columns:
            match feature:
                case _ if feature in constants.LINEAR_FEATURES + constants.BAND_FEATURES:
                    if feature in constants.BAND_FEATURES:
                        df_bands = pd.DataFrame(result[feature].tolist())
                        vals = np.array(df_bands.values.tolist())
                        vals = vals.transpose((0, 2, 1))
                        keys = df_bands.keys()
                    else:
                        vals = np.array(result[feature].tolist())

                    new_vals = np.full((vals.shape[0], len(target_channels), *vals.shape[2:]), np.nan)  # dubious

                    for i, ch in enumerate(channel_names):
                        if ch in channel_map:
                            new_vals[:, channel_map[ch]] = vals[:, i]

                    if feature in constants.BAND_FEATURES:
                        new_vals = new_vals.transpose((0, 2, 1))
                        result[feature] = [dict(zip(keys, vals)) for vals in new_vals]
                    else:
                        result[feature] = [list(x) for x in new_vals]

                case _ if feature in constants.MATRIX_FEATURES:
                    if feature in ["cohere", "zcohere", "imcoh", "zimcoh"]:
                        df_bands = pd.DataFrame(result[feature].tolist())
                        vals = np.array(df_bands.values.tolist())
                        keys = df_bands.keys()
                    else:
                        vals = np.array(result[feature].tolist())

                    logging.debug(f"vals.shape: {vals.shape}")
                    new_shape = list(vals.shape[:-2]) + [len(target_channels), len(target_channels)]
                    new_vals = np.full(new_shape, np.nan)

                    ch1_valid = np.array([ch in channel_map for ch in channel_names])
                    ch2_valid = ch1_valid.copy()
                    valid_pairs = np.logical_and(ch1_valid[:, None], ch2_valid[None, :])  # 2D boolean mask

                    for i, j in zip(*np.where(valid_pairs)):
                        ch1, ch2 = channel_names[i], channel_names[j]
                        new_vals[..., channel_map[ch1], channel_map[ch2]] = vals[..., i, j]

                    triu_mask = np.triu_indices(len(target_channels), k=0)
                    new_vals += new_vals.transpose((*range(new_vals.ndim - 2), -1, -2))
                    new_vals[..., triu_mask[0], triu_mask[1]] = 0

                    if feature in ["cohere", "zcohere", "imcoh", "zimcoh"]:
                        result[feature] = [dict(zip(keys, vals)) for vals in new_vals]
                    else:
                        result[feature] = [list(x) for x in new_vals]

                case _ if feature in constants.HIST_FEATURES:
                    coords = np.array([x[0] for x in result[feature].tolist()])
                    vals = np.array([x[1] for x in result[feature].tolist()])
                    new_vals = np.full((*vals.shape[0:-1], len(target_channels)), np.nan)

                    for i, ch in enumerate(channel_names):
                        if ch in channel_map:
                            new_vals[:, ..., channel_map[ch]] = vals[:, ..., i]

                    result[feature] = [(coords[i], new_vals[i]) for i in range(len(coords))]

                case _:
                    raise ValueError(f"Invalid feature: {feature}")

        if inplace:
            self.result = result

            logging.debug(f"Old channel names: {self.channel_names}")
            self.channel_names = target_channels
            logging.debug(f"New channel names: {self.channel_names}")

            logging.debug(f"Old channel abbreviations: {self.channel_abbrevs}")
            self.__update_instance_vars()
            logging.debug(f"New channel abbreviations: {self.channel_abbrevs}")

        return result

    def read_sars_spikes(self, sars: list["SpikeAnalysisResult"], read_mode: Literal["sa", "mne"] = "sa", inplace=True):
        match read_mode:
            case "sa":
                spikes_all = []
                for sar in sars:  # for each continuous recording session
                    spikes_channel = []
                    for i, sa in enumerate(sar.result_sas):  # for each channel
                        spike_times = []
                        for unit in sa.sorting.get_unit_ids():  # Flatten units
                            spike_times.extend(sa.sorting.get_unit_spike_train(unit_id=unit).tolist())
                        spike_times = np.array(spike_times) / sa.sorting.get_sampling_frequency()
                        spikes_channel.append(spike_times)
                    spikes_all.append(spikes_channel)
                return self._read_from_spikes_all(spikes_all, inplace=inplace)
            case "mne":
                raws = [sar.result_mne for sar in sars]
                return self.read_mnes_spikes(raws, inplace=inplace)
            case _:
                raise ValueError(f"Invalid read_mode: {read_mode}")

    def read_mnes_spikes(self, raws: list[mne.io.RawArray], inplace=True):
        spikes_all = []
        for raw in raws:
            # each mne is a contiguous recording session
            events, event_id = mne.events_from_annotations(raw)
            event_id = {k.item(): v for k, v in event_id.items()}

            spikes_channel = []
            for channel in raw.ch_names:
                if channel not in event_id.keys():
                    logging.warning(f"Channel {channel} not found in event_id")
                    spikes_channel.append([])
                    continue
                event_id_channel = event_id[channel]
                spike_times = events[events[:, 2] == event_id_channel, 0]
                spike_times = spike_times / raw.info["sfreq"]
                spikes_channel.append(spike_times)
            spikes_all.append(spikes_channel)
        return self._read_from_spikes_all(spikes_all, inplace=inplace)

    def _read_from_spikes_all(self, spikes_all: list[list[list[float]]], inplace=True):
        # Each groupby animalday is a recording session
        grouped = self.result.groupby("animalday")
        animaldays = grouped.groups.keys()
        logging.debug(f"Animal days: {animaldays}")
        spike_counts = dict(zip(animaldays, spikes_all))
        spike_counts = grouped.apply(lambda x: _bin_spike_df(x, spikes_channel=spike_counts[x.name]))
        spike_counts: pd.Series = spike_counts.explode()

        if spike_counts.size != self.result.shape[0]:
            logging.warning(f"Spike counts size {spike_counts.size} does not match result size {self.result.shape[0]}")

        result = self.result.copy()
        result["nspike"] = spike_counts.tolist()
        result["lognspike"] = list(core.log_transform(np.stack(result["nspike"].tolist(), axis=0)))
        if inplace:
            self.result = result
        return result

    def get_info(self):
        """Returns a formatted string with basic information about the WindowAnalysisResult object"""
        info = []
        info.append(f"feature names: {', '.join(self._feature_columns)}")
        info.append(f"animaldays: {', '.join(self.result['animalday'].unique())}")
        info.append(
            f"animal_id: {self.result['animal'].unique()[0] if 'animal' in self.result.columns else self.animal_id}"
        )
        info.append(
            f"genotype: {self.result['genotype'].unique()[0] if 'genotype' in self.result.columns else self.genotype}"
        )
        info.append(f"channel_names: {', '.join(self.channel_names) if self.channel_names else 'None'}")

        return "\n".join(info)

    def get_result(self, features: list[str], exclude: list[str] = [], allow_missing=False):
        """Get windowed analysis result dataframe, with helpful filters

        Args:
            features (list[str]): List of features to get from result
            exclude (list[str], optional): List of features to exclude from result; will override the features parameter. Defaults to [].
            allow_missing (bool, optional): If True, will return all requested features as columns regardless if they exist in result. Defaults to False.

        Returns:
            result: pd.DataFrame object with features in columns and windows in rows
        """
        features = _sanitize_feature_request(features, exclude)
        if not allow_missing:
            return self.result.loc[:, self._nonfeature_columns + features]
        else:
            return self.result.reindex(columns=self._nonfeature_columns + features)

    def get_groupavg_result(
        self, features: list[str], exclude: list[str] = [], df: pd.DataFrame = None, groupby="animalday"
    ):
        """Group result and average within groups. Preserves data structure and shape for each feature.

        Args:
            features (list[str]): List of features to get from result
            exclude (list[str], optional): List of features to exclude from result. Will override the features parameter. Defaults to [].
            df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
            groupby (str, optional): Feature or list of features to group by before averaging. Passed to the `by` parameter in pd.DataFrame.groupby(). Defaults to "animalday".

        Returns:
            grouped_result: result grouped by `groupby` and averaged for each group.
        """
        result_grouped, result_validcols = self.__get_groups(features=features, exclude=exclude, df=df, groupby=groupby)
        features = _sanitize_feature_request(features, exclude)

        avg_results = []
        for f in features:
            if f in result_validcols:
                avg_result_col = result_grouped.apply(self._average_feature, f, "duration", include_groups=False)
                avg_result_col.name = f
                avg_results.append(avg_result_col)
            else:
                logging.warning(f"{f} not calculated, skipping")

        return pd.concat(avg_results, axis=1)

    def __get_groups(self, features: list[str], exclude: list[str] = [], df: pd.DataFrame = None, groupby="animalday"):
        features = _sanitize_feature_request(features, exclude)
        result_win = self.result if df is None else df
        return result_win.groupby(groupby), result_win.columns

    def get_grouprows_result(
        self,
        features: list[str],
        exclude: list[str] = [],
        df: pd.DataFrame = None,
        multiindex=["animalday", "animal", "genotype"],
        include=["duration", "endfile"],
    ):
        features = _sanitize_feature_request(features, exclude)
        result_win = self.result if df is None else df
        result_win = result_win.filter(features + multiindex + include)
        return result_win.set_index(multiindex)

    def get_filter_logrms_range(self, df: pd.DataFrame = None, z_range=3, **kwargs):
        """Filter windows based on log(rms).

        Args:
            df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
            z_range (float, optional): The z-score range to filter by. Values outside this range will be set to NaN.

        Returns:
            out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
        """
        result = df.copy() if df is not None else self.result.copy()
        z_range = abs(z_range)
        np_rms = np.array(result["rms"].tolist())
        np_logrms = np.log(np_rms)
        del np_rms
        np_logrmsz = zscore(np_logrms, axis=0, nan_policy="omit")
        np_logrms[(np_logrmsz > z_range) | (np_logrmsz < -z_range)] = np.nan

        out = np.full(np_logrms.shape, True)
        out[(np_logrmsz > z_range) | (np_logrmsz < -z_range)] = False
        return out

    def get_filter_high_rms(self, df: pd.DataFrame = None, max_rms=500, **kwargs):
        """Filter windows based on rms.

        Args:
            df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
            max_rms (float, optional): The maximum rms value to filter by. Values above this will be set to NaN.

        Returns:
            out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
        """
        result = df.copy() if df is not None else self.result.copy()
        np_rms = np.array(result["rms"].tolist())
        np_rmsnan = np_rms.copy()
        # Convert to float to allow NaN assignment for integer arrays
        if np_rmsnan.dtype.kind in ("i", "u"):  # integer types
            np_rmsnan = np_rmsnan.astype(float)
        np_rmsnan[np_rms > max_rms] = np.nan
        result["rms"] = np_rmsnan.tolist()

        out = np.full(np_rms.shape, True)
        out[np_rms > max_rms] = False
        return out

    def get_filter_low_rms(self, df: pd.DataFrame = None, min_rms=30, **kwargs):
        """Filter windows based on rms.

        Args:
            df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
            min_rms (float, optional): The minimum rms value to filter by. Values below this will be set to NaN.

        Returns:
            out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
        """
        result = df.copy() if df is not None else self.result.copy()
        np_rms = np.array(result["rms"].tolist())
        np_rmsnan = np_rms.copy()
        np_rmsnan[np_rms < min_rms] = np.nan
        result["rms"] = np_rmsnan.tolist()

        out = np.full(np_rms.shape, True)
        out[np_rms < min_rms] = False
        return out

    def get_filter_high_beta(self, df: pd.DataFrame = None, max_beta_prop=0.4, **kwargs):
        """Filter windows based on beta power.

        Args:
            df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
            max_beta_prop (float, optional): The maximum beta power to filter by. Values above this will be set to NaN. Defaults to 0.4.

        Returns:
            out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
        """
        result = df.copy() if df is not None else self.result.copy()
        if "psdfrac" in result.columns:
            df_psdfrac = pd.DataFrame(result["psdfrac"].tolist())
            np_prop = np.array(df_psdfrac["beta"].tolist())
        elif "psdband" in result.columns and "psdtotal" in result.columns:
            df_psdband = pd.DataFrame(result["psdband"].tolist())
            np_beta = np.array(df_psdband["beta"].tolist())
            np_total = np.array(result["psdtotal"].tolist())
            np_prop = np_beta / np_total
        else:
            raise ValueError("psdfrac or psdband+psdtotal required for beta power filtering")

        out = np.full(np_prop.shape, True)
        out[np_prop > max_beta_prop] = False
        out = np.broadcast_to(np.all(out, axis=-1)[:, np.newaxis], out.shape)
        return out

    def get_filter_reject_channels(self, bad_channels: list[str], use_abbrevs: bool = None, **kwargs):
        """Filter channels to reject.

        Args:
            bad_channels (list[str]): List of channels to reject. Can be either full channel names or abbreviations.
                The method will automatically detect which format is being used.
            use_abbrevs (bool, optional): Override automatic detection. If True, channels are assumed to be channel abbreviations. If False, channels are assumed to be channel names.
                If None, channels are parsed to abbreviations and matched against self.channel_abbrevs.

        Returns:
            out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
        """
        channel_targets = (
            self.channel_abbrevs if use_abbrevs or use_abbrevs is None else self.channel_names
        )  # Match to appropriate target
        if use_abbrevs is None:  # Match channels as abbreviations
            bad_channels = [
                core.utils.parse_chname_to_abbrev(ch, assume_from_number=self.assume_from_number) for ch in bad_channels
            ]

        n_samples = len(self.result)
        n_channels = len(channel_targets)
        mask = np.ones((n_samples, n_channels), dtype=bool)

        # Match channels to channel_targets
        for ch in bad_channels:
            if ch in channel_targets:
                mask[:, channel_targets.index(ch)] = False
            else:
                warnings.warn(f"Channel {ch} not found in {channel_targets}")
        return mask

    def get_filter_reject_channels_by_recording_session(
        self, bad_channels_dict: dict[str, list[str]] = None, use_abbrevs: bool = None
    ):
        """Filter channels to reject for each recording session

        Args:
            bad_channels_dict (dict[str, list[str]]): Dictionary of list of channels to reject for each recording session.
                Can be either full channel names or abbreviations. The method will automatically detect which format is being used.
                If None, the method will use the bad_channels_dict passed to the constructor.
            use_abbrevs (bool, optional): Override automatic detection. If True, channels are assumed to be channel abbreviations. If False, channels are assumed to be channel names.
                If None, channels are parsed to abbreviations and matched against self.channel_abbrevs.

        Returns:
            out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
        """
        if bad_channels_dict is None:
            bad_channels_dict = self.bad_channels_dict

        n_samples = len(self.result)
        n_channels = len(self.channel_names)
        mask = np.ones((n_samples, n_channels), dtype=bool)

        # Group by animalday to apply filters per recording session
        for animalday, group in self.result.groupby("animalday"):
            if animalday not in bad_channels_dict:
                logging.warning(f"No bad channels specified for recording session {animalday}")
                continue

            bad_channels = bad_channels_dict[animalday]
            channel_targets = self.channel_abbrevs if use_abbrevs or use_abbrevs is None else self.channel_names
            if use_abbrevs is None:
                bad_channels = [
                    core.parse_chname_to_abbrev(ch, assume_from_number=self.assume_from_number) for ch in bad_channels
                ]

            # Get indices for this recording session
            session_indices = group.index

            # Apply channel filtering for this session
            for ch in bad_channels:
                if ch in channel_targets:
                    ch_idx = channel_targets.index(ch)
                    mask[session_indices, ch_idx] = False
                else:
                    logging.warning(f"Channel {ch} not found in {channel_targets} for session {animalday}")

        return mask

    def get_filter_morphological_smoothing(
        self, filter_mask: np.ndarray, smoothing_seconds: float, **kwargs
    ) -> np.ndarray:
        """Apply morphological smoothing to a filter mask.

        Args:
            filter_mask (np.ndarray): Input boolean mask of shape (n_windows, n_channels)
            smoothing_seconds (float): Time window in seconds for morphological operations

        Returns:
            np.ndarray: Smoothed boolean mask
        """
        if "duration" not in self.result.columns:
            raise ValueError("Cannot calculate window duration - 'duration' column missing")

        window_duration = self.result["duration"].median()
        structure_size = max(1, int(smoothing_seconds / window_duration))

        if structure_size <= 1:
            return filter_mask

        smoothed_mask = filter_mask.copy()
        for ch_idx in range(filter_mask.shape[1]):
            channel_mask = filter_mask[:, ch_idx]
            # Opening removes small isolated artifacts
            channel_mask = binary_opening(channel_mask, structure=np.ones(structure_size))
            # Closing fills small gaps in valid data
            channel_mask = binary_closing(channel_mask, structure=np.ones(structure_size))
            smoothed_mask[:, ch_idx] = channel_mask

        return smoothed_mask

    def filter_morphological_smoothing(self, smoothing_seconds: float) -> "WindowAnalysisResult":
        """Apply morphological smoothing to all data.

        Args:
            smoothing_seconds (float): Time window in seconds for morphological operations

        Returns:
            WindowAnalysisResult: New filtered instance
        """
        # Start with all-True mask and smooth it
        base_mask = np.ones((len(self.result), len(self.channel_names)), dtype=bool)
        smoothed_mask = self.get_filter_morphological_smoothing(base_mask, smoothing_seconds)
        return self._create_filtered_copy(smoothed_mask)

    def filter_all(
        self,
        df: pd.DataFrame = None,
        inplace=True,
        bad_channels: list[str] = None,
        min_valid_channels=3,
        filters: list[callable] = None,
        morphological_smoothing_seconds: float = None,
        **kwargs,
    ):
        """Apply a list of filters to the data. Filtering should be performed before aggregation.

        Args:
            df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
            inplace (bool, optional): If True, modify the result in place. Defaults to True.
            bad_channels (list[str], optional): List of channels to reject. Defaults to None.
            min_valid_channels (int, optional): Minimum number of valid channels required per window. Defaults to 3.
            filters (list[callable], optional): List of filter functions to apply. Each function should return a boolean mask.
                If None, uses default filters: [get_filter_logrms_range, get_filter_high_rms, get_filter_low_rms, get_filter_high_beta].
                Defaults to None.
            morphological_smoothing_seconds (float, optional): If provided, apply morphological opening/closing to smooth the filter mask.
                This removes isolated false positives/negatives along the time axis for each channel independently.
                The value specifies the time window in seconds for the morphological operations. Defaults to None.
            **kwargs: Additional keyword arguments to pass to filter functions.

        Returns:
            WindowAnalysisResult: Filtered result
        """
        if filters is None:
            # TODO refactor these into standalone functions, which take in a war as the first parameter, then pass
            # filt_bool = filt(self, df, **kwargs) as needed
            filters = [
                self.get_filter_logrms_range,
                self.get_filter_high_rms,
                self.get_filter_low_rms,
                self.get_filter_high_beta,
                self.get_filter_reject_channels_by_recording_session,
            ]

        filt_bools = []
        # Apply each filter function
        for filter_function in filters:
            filt_bool = filter_function(df, **kwargs)
            filt_bools.append(filt_bool)
            logging.info(
                f"{filter_function.__name__}:\tfiltered {filt_bool.size - np.count_nonzero(filt_bool)}/{filt_bool.size}"
            )

        # Filter channels manually
        # REVIEW somehow add this to the main list of filters, but I'm not sure how to do this.
        if bad_channels is not None:
            filt_bools.append(self.get_filter_reject_channels(bad_channels))
            logging.debug(f"Reject channels: {filt_bools[-1]}")

        # Apply all filters
        filt_bool_all = np.prod(np.stack(filt_bools, axis=-1), axis=-1).astype(bool)
        logging.debug(f"filt_bool_all.shape: {filt_bool_all.shape}")  # (windows, channels)

        # Apply morphological smoothing if requested
        if morphological_smoothing_seconds is not None:
            if "duration" not in self.result.columns:
                raise ValueError("Cannot calculate window duration - 'duration' column missing from result dataframe")
            window_duration = self.result["duration"].median()

            # Calculate number of windows for the smoothing
            structure_size = max(1, int(morphological_smoothing_seconds / window_duration))

            if structure_size > 1:
                logging.info(
                    f"Applying morphological smoothing with {structure_size} windows ({morphological_smoothing_seconds}s / {window_duration}s per window)"
                )
                # Apply channel-wise temporal smoothing (each channel processed independently)
                # This avoids spatial assumptions while smoothing temporal artifacts
                for ch_idx in range(filt_bool_all.shape[1]):
                    channel_mask = filt_bool_all[:, ch_idx]
                    # Opening removes small isolated artifacts
                    channel_mask = binary_opening(channel_mask, structure=np.ones(structure_size))
                    # Closing fills small gaps in valid data
                    channel_mask = binary_closing(channel_mask, structure=np.ones(structure_size))
                    filt_bool_all[:, ch_idx] = channel_mask
            else:
                logging.info("Skipping morphological smoothing - structure size would be 1 (no effect)")

        # Filter windows based on number of valid channels
        valid_channels_per_window = np.sum(filt_bool_all, axis=1)  # axis 1 = channel
        window_mask = valid_channels_per_window >= min_valid_channels  # True if window has enough valid channels
        filt_bool_all = filt_bool_all & window_mask[:, np.newaxis]  # Apply window mask to all channels

        filtered_result = self._apply_filter(filt_bool_all)
        if inplace:
            del self.result
            self.result = filtered_result
        return WindowAnalysisResult(
            filtered_result,
            self.animal_id,
            self.genotype,
            self.channel_names,
            self.assume_from_number,
            self.bad_channels_dict,
            self.suppress_short_interval_error,
        )

    def _create_filtered_copy(self, filter_mask: np.ndarray) -> "WindowAnalysisResult":
        """Create a new WindowAnalysisResult with the filter applied.

        Args:
            filter_mask (np.ndarray): Boolean mask of shape (n_windows, n_channels)

        Returns:
            WindowAnalysisResult: New instance with filter applied
        """
        filtered_result = self._apply_filter(filter_mask)
        return WindowAnalysisResult(
            filtered_result,
            self.animal_id,
            self.genotype,
            self.channel_names,
            self.assume_from_number,
            self.bad_channels_dict,
            self.suppress_short_interval_error,
        )

    def filter_logrms_range(self, z_range: float = 3) -> "WindowAnalysisResult":
        """Filter based on log(rms) z-score range.

        Args:
            z_range (float): Z-score range threshold. Defaults to 3.

        Returns:
            WindowAnalysisResult: New filtered instance
        """
        mask = self.get_filter_logrms_range(z_range=z_range)
        return self._create_filtered_copy(mask)

    def filter_high_rms(self, max_rms: float = 500) -> "WindowAnalysisResult":
        """Filter out windows with RMS above threshold.

        Args:
            max_rms (float): Maximum RMS threshold. Defaults to 500.

        Returns:
            WindowAnalysisResult: New filtered instance
        """
        mask = self.get_filter_high_rms(max_rms=max_rms)
        return self._create_filtered_copy(mask)

    def filter_low_rms(self, min_rms: float = 50) -> "WindowAnalysisResult":
        """Filter out windows with RMS below threshold.

        Args:
            min_rms (float): Minimum RMS threshold. Defaults to 50.

        Returns:
            WindowAnalysisResult: New filtered instance
        """
        mask = self.get_filter_low_rms(min_rms=min_rms)
        return self._create_filtered_copy(mask)

    def filter_high_beta(self, max_beta_prop: float = 0.4) -> "WindowAnalysisResult":
        """Filter out windows with high beta power.

        Args:
            max_beta_prop (float): Maximum beta power proportion. Defaults to 0.4.

        Returns:
            WindowAnalysisResult: New filtered instance
        """
        mask = self.get_filter_high_beta(max_beta_prop=max_beta_prop)
        return self._create_filtered_copy(mask)

    def filter_reject_channels(self, bad_channels: list[str], use_abbrevs: bool = None) -> "WindowAnalysisResult":
        """Filter out specified bad channels.

        Args:
            bad_channels (list[str]): List of channel names to reject
            use_abbrevs (bool, optional): Whether to use abbreviations. Defaults to None.

        Returns:
            WindowAnalysisResult: New filtered instance
        """
        mask = self.get_filter_reject_channels(bad_channels, use_abbrevs=use_abbrevs)
        return self._create_filtered_copy(mask)

    def filter_reject_channels_by_session(
        self, bad_channels_dict: dict[str, list[str]] = None, use_abbrevs: bool = None
    ) -> "WindowAnalysisResult":
        """Filter out bad channels by recording session.

        Args:
            bad_channels_dict (dict[str, list[str]], optional): Dict of bad channels per session
            use_abbrevs (bool, optional): Whether to use abbreviations. Defaults to None.

        Returns:
            WindowAnalysisResult: New filtered instance
        """
        mask = self.get_filter_reject_channels_by_recording_session(bad_channels_dict, use_abbrevs=use_abbrevs)
        return self._create_filtered_copy(mask)

    def apply_filters(
        self, filter_config: dict = None, min_valid_channels: int = 3, morphological_smoothing_seconds: float = None
    ) -> "WindowAnalysisResult":
        """Apply multiple filters using configuration.

        Args:
            filter_config (dict, optional): Dictionary of filter names and parameters.
                Available filters: 'logrms_range', 'high_rms', 'low_rms', 'high_beta',
                'reject_channels', 'reject_channels_by_session', 'morphological_smoothing'
            min_valid_channels (int): Minimum valid channels per window. Defaults to 3.
            morphological_smoothing_seconds (float, optional): Temporal smoothing window (deprecated, use config instead)

        Returns:
            WindowAnalysisResult: New filtered instance

        Examples:
            >>> config = {
            ...     'logrms_range': {'z_range': 3},
            ...     'high_rms': {'max_rms': 500},
            ...     'reject_channels': {'bad_channels': ['LMot', 'RMot']},
            ...     'morphological_smoothing': {'smoothing_seconds': 8.0}
            ... }
            >>> filtered_war = war.apply_filters(config)
        """
        if filter_config is None:
            filter_config = {
                "logrms_range": {"z_range": 3},
                "high_rms": {"max_rms": 500},
                "low_rms": {"min_rms": 50},
                "high_beta": {"max_beta_prop": 0.4},
                "reject_channels_by_session": {},
            }

        filter_methods = {
            "logrms_range": self.get_filter_logrms_range,
            "high_rms": self.get_filter_high_rms,
            "low_rms": self.get_filter_low_rms,
            "high_beta": self.get_filter_high_beta,
            "reject_channels": self.get_filter_reject_channels,
            "reject_channels_by_session": self.get_filter_reject_channels_by_recording_session,
        }

        filt_bools = []
        morphological_params = None

        for filter_name, filter_params in filter_config.items():
            if filter_name == "morphological_smoothing":
                morphological_params = filter_params
                continue

            if filter_name not in filter_methods:
                raise ValueError(
                    f"Unknown filter: {filter_name}. Available: {list(filter_methods.keys()) + ['morphological_smoothing']}"
                )

            filter_func = filter_methods[filter_name]
            filt_bool = filter_func(**filter_params)
            filt_bools.append(filt_bool)
            logging.info(f"{filter_name}: filtered {filt_bool.size - np.count_nonzero(filt_bool)}/{filt_bool.size}")

        # Combine all filter masks
        if filt_bools:
            filt_bool_all = np.prod(np.stack(filt_bools, axis=-1), axis=-1).astype(bool)
        else:
            filt_bool_all = np.ones((len(self.result), len(self.channel_names)), dtype=bool)

        # Apply morphological smoothing if requested (either from config or parameter)
        if morphological_params or morphological_smoothing_seconds is not None:
            if morphological_params:
                smoothing_seconds = morphological_params["smoothing_seconds"]
            else:
                smoothing_seconds = morphological_smoothing_seconds

            filt_bool_all = self.get_filter_morphological_smoothing(filt_bool_all, smoothing_seconds)
            logging.info(f"Applied morphological smoothing: {smoothing_seconds}s")

        # Filter windows based on minimum valid channels
        valid_channels_per_window = np.sum(filt_bool_all, axis=1)
        window_mask = valid_channels_per_window >= min_valid_channels
        filt_bool_all = filt_bool_all & window_mask[:, np.newaxis]

        return self._create_filtered_copy(filt_bool_all)

    def _apply_filter(self, filter_tfs: np.ndarray):
        result = self.result.copy()
        filter_tfs = np.array(filter_tfs, dtype=bool)  # (M fragments, N channels)
        for feat in constants.FEATURES:
            if feat not in result.columns:
                logging.info(f"Skipping {feat} because it is not in result")
                continue
            logging.info(f"Filtering {feat}")
            match feat:  # NOTE refactor this to use constants
                case "rms" | "ampvar" | "psdtotal" | "nspike" | "logrms" | "logampvar" | "logpsdtotal" | "lognspike":
                    vals = np.array(result[feat].tolist())
                    # Convert to float to allow NaN assignment for integer features
                    if vals.dtype.kind in ("i", "u"):  # integer types
                        vals = vals.astype(float)
                    vals[~filter_tfs] = np.nan
                    result[feat] = vals.tolist()
                case "psd":
                    # FIXME The sampling rates have changed between computation passes so WARs have different shapes.
                    # Add a check for same sampling frequency, other war-relevant properties etc.
                    # The logging lines below should be removed at some point, but I'll keep it this way for now
                    logging.info(
                        f"set([x[0].shape for x in result[feat].tolist()]) = {list(set([x[0].shape for x in result[feat].tolist()]))}"
                    )
                    logging.info(
                        f"set([x[1].shape for x in result[feat].tolist()]) = {list(set([x[1].shape for x in result[feat].tolist()]))}"
                    )
                    coords = np.array([x[0] for x in result[feat].tolist()])
                    vals = np.array([x[1] for x in result[feat].tolist()])
                    mask = np.broadcast_to(filter_tfs[:, np.newaxis, :], vals.shape)
                    vals[~mask] = np.nan
                    outs = [(c, vals[i, :, :]) for i, c in enumerate(coords)]
                    result[feat] = outs
                case "psdband" | "psdfrac" | "logpsdband" | "logpsdfrac":
                    vals = pd.DataFrame(result[feat].tolist())
                    for colname in vals.columns:
                        v = np.array(vals[colname].tolist())
                        v[~filter_tfs] = np.nan
                        vals[colname] = v.tolist()
                    result[feat] = vals.to_dict("records")
                case "psdslope":
                    vals = np.array(result[feat].tolist())
                    mask = np.broadcast_to(filter_tfs[:, :, np.newaxis], vals.shape)
                    vals[~mask] = np.nan
                    # vals = [list(map(tuple, x)) for x in vals.tolist()]
                    result[feat] = vals.tolist()
                case "cohere" | "zcohere" | "imcoh" | "zimcoh":
                    vals = pd.DataFrame(result[feat].tolist())
                    shape = np.array(vals.iloc[:, 0].tolist()).shape
                    mask = np.broadcast_to(filter_tfs[:, :, np.newaxis], shape)
                    for colname in vals.columns:
                        v = np.array(vals[colname].tolist())
                        v[~mask] = np.nan
                        v[~mask.transpose(0, 2, 1)] = np.nan
                        vals[colname] = v.tolist()
                    result[feat] = vals.to_dict("records")
                case "pcorr" | "zpcorr":
                    vals = np.array(result[feat].tolist())
                    mask = np.broadcast_to(filter_tfs[:, :, np.newaxis], vals.shape)
                    vals[~mask] = np.nan
                    vals[~mask.transpose(0, 2, 1)] = np.nan
                    result[feat] = vals.tolist()
                case _:
                    raise ValueError(f"Unknown feature to filter {feat}")
        return result

    def save_pickle_and_json(
        self, folder: str | Path, make_folder=True, slugify_filebase=True, save_abbrevs_as_chnames=False
    ):
        """Archive window analysis result into the folder specified, as a pickle and json file.

        Args:
            folder (str | Path): Destination folder to save results to
            make_folder (bool, optional): If True, create the folder if it doesn't exist. Defaults to True.
            slugify_filebase (bool, optional): If True, slugify the filebase (replace special characters). Defaults to True.
            save_abbrevs_as_chnames (bool, optional): If True, save the channel abbreviations as the channel names in the json file. Defaults to False.
        """
        folder = Path(folder)
        if make_folder:
            folder.mkdir(parents=True, exist_ok=True)

        if slugify_filebase:
            filebase = folder / slugify(f"{self.animal_id}-{self.genotype}")
        else:
            filebase = folder / f"{self.animal_id}-{self.genotype}"
        filebase = str(filebase)

        self.result.to_pickle(filebase + ".pkl")
        json_dict = {
            "animal_id": self.animal_id,
            "genotype": self.genotype,
            "channel_names": self.channel_abbrevs if save_abbrevs_as_chnames else self.channel_names,
            "assume_from_number": False if save_abbrevs_as_chnames else self.assume_from_number,
            "bad_channels_dict": self.bad_channels_dict,
            "suppress_short_interval_error": self.suppress_short_interval_error,
        }

        with open(filebase + ".json", "w") as f:
            json.dump(json_dict, f, indent=2)

    @classmethod
    def load_pickle_and_json(cls, folder_path=None):
        """Load WindowAnalysisResult from folder

        Args:
            folder_path (str, optional): Path of folder containing one .pkl and .json file each. Defaults to None.
            df_pickle_path (str, optional): Path of .pkl file. If this and folder_path are not None, raises an error. Defaults to None.
            json_path (str, optional): Path of .json file. If this and folder_path are not None, raises an error. Defaults to None.

        Raises:
            ValueError: Both df_pickle_path and json_path must be None if folder_path is provided
            ValueError: Expected exactly one pickle and one json file in folder_path

        Returns:
            result: WindowAnalysisResult object
        """
        if folder_path is not None:
            folder_path = Path(folder_path)
            if not folder_path.exists():
                raise ValueError(f"Folder path {folder_path} does not exist")

            pkl_files = list(folder_path.glob("*.pkl"))
            json_files = list(folder_path.glob("*.json"))

            if len(pkl_files) != 1 or len(json_files) != 1:
                raise ValueError(f"Expected exactly one pickle and one json file in {folder_path}")

            df_pickle_path = pkl_files[0]
            json_path = json_files[0]

        with open(df_pickle_path, "rb") as f:
            data = pd.read_pickle(f)
        with open(json_path, "r") as f:
            metadata = json.load(f)
        return cls(data, **metadata)

    def aggregate_time_windows(self, groupby: list[str] | str = ["animalday", "isday"]) -> None:
        """Aggregate time windows into a single data point per groupby by averaging features. This reduces the number of rows in the result.

        Args:
            groupby (list[str] | str, optional): Columns to group by. Defaults to ['animalday', 'isday'], which groups by animalday (recording session) and isday (day/night).

        Raises:
            ValueError: groupby must be from ['animalday', 'isday']
            ValueError: Columns in groupby not found in result
            ValueError: Columns in groupby are not constant in groups
        """
        if isinstance(groupby, str):
            groupby = [groupby]
        if not all(col in ["animalday", "isday"] for col in groupby):
            raise ValueError(f"groupby must be from ['animalday', 'isday']. Got {groupby}")
        if not all(col in self.result.columns for col in groupby):
            raise ValueError(f"Columns {groupby} not found in result. Columns: {self.result.columns.tolist()}")

        features = [f for f in constants.FEATURES if f in self.result.columns]
        logging.debug(f"Aggregating {features}")
        result_grouped = self.result.groupby(groupby)

        agg_dict = {}

        if "animalday" not in groupby:
            agg_dict["animalday"] = lambda df: None
        if "isday" not in groupby:
            agg_dict["isday"] = lambda df: None

        constant_cols = ["animal", "day", "genotype"]
        for col in constant_cols:
            if col in self.result.columns:
                is_constant = result_grouped[col].nunique() == 1
                if not is_constant.all():
                    non_constant_groups = is_constant[~is_constant].index.tolist()
                    raise ValueError(f"Column {col} is not constant in groups: {non_constant_groups}")
                agg_dict[col] = lambda df, col=col: df[col].iloc[0]

        if "duration" in self.result.columns:
            agg_dict["duration"] = lambda df: np.sum(df["duration"])

        if "endfile" in self.result.columns:
            agg_dict["endfile"] = lambda df: df["endfile"].iloc[-1]

        if "timestamp" in self.result.columns:
            agg_dict["timestamp"] = lambda df: df["timestamp"].iloc[0]

        for feat in features:
            agg_dict[feat] = lambda df, feat=feat: self._average_feature(df, feat, "duration")

        aggregated_df = result_grouped.apply(
            lambda df: pd.Series({col: agg_dict[col](df) for col in self.result.columns if col not in groupby})
        )

        self.result = aggregated_df.reset_index(drop=False)  # Keep animalday/isday as a column

        self.suppress_short_interval_error = True
        logging.info("Setting suppress_short_interval_error to True")
        self.__update_instance_vars()

    def add_unique_hash(self, nbytes: int | None = None):
        """Adds a hex hash to the animal ID to ensure uniqueness. This prevents collisions when, for example, multiple animals in ExperimentPlotter have the same animal ID.

        Args:
            nbytes (int, optional): Number of bytes to generate. This is passed directly to secrets.token_hex(). Defaults to None, which generates 16 hex characters (8 bytes).
        """
        import secrets

        hash_suffix = secrets.token_hex(nbytes)
        new_animal_id = f"{self.animal_id}_{hash_suffix}"

        if "animal" in self.result.columns:
            self.result["animal"] = new_animal_id
        if "animalday" in self.result.columns:
            self.result["animalday"] = self.result["animalday"].str.replace(self.animal_id, new_animal_id)
        self.animal_id = new_animal_id

        self.__update_instance_vars()

__init__(result, animal_id=None, genotype=None, channel_names=None, assume_from_number=False, bad_channels_dict={}, suppress_short_interval_error=False)

Parameters:

Name Type Description Default
result DataFrame

Result comes from AnimalOrganizer.compute_windowed_analysis()

required
animal_id str

Identifier for the animal where result was computed from. Defaults to None.

None
genotype str

Genotype of animal. Defaults to None.

None
channel_names list[str]

List of channel names. Defaults to None.

None
assume_channels bool

If true, assumes channel names according to AnimalFeatureParser.DEFAULT_CHNUM_TO_NAME. Defaults to False.

required
bad_channels_dict dict[str, list[str]]

Dictionary of channels to reject for each recording session. Defaults to {}.

{}
suppress_short_interval_error bool

If True, suppress ValueError for short intervals between timestamps. Useful for aggregated WARs with large window sizes. Defaults to False.

False
Source code in pythoneeg/visualization/results.py
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
def __init__(
    self,
    result: pd.DataFrame,
    animal_id: str = None,
    genotype: str = None,
    channel_names: list[str] = None,
    assume_from_number=False,
    bad_channels_dict: dict[str, list[str]] = {},
    suppress_short_interval_error=False,
) -> None:
    """
    Args:
        result (pd.DataFrame): Result comes from AnimalOrganizer.compute_windowed_analysis()
        animal_id (str, optional): Identifier for the animal where result was computed from. Defaults to None.
        genotype (str, optional): Genotype of animal. Defaults to None.
        channel_names (list[str], optional): List of channel names. Defaults to None.
        assume_channels (bool, optional): If true, assumes channel names according to AnimalFeatureParser.DEFAULT_CHNUM_TO_NAME. Defaults to False.
        bad_channels_dict (dict[str, list[str]], optional): Dictionary of channels to reject for each recording session. Defaults to {}.
        suppress_short_interval_error (bool, optional): If True, suppress ValueError for short intervals between timestamps. Useful for aggregated WARs with large window sizes. Defaults to False.
    """
    self.result = result
    self.animal_id = animal_id
    self.genotype = genotype
    self.channel_names = channel_names
    self.assume_from_number = assume_from_number
    self.bad_channels_dict = bad_channels_dict
    self.suppress_short_interval_error = suppress_short_interval_error

    self.__update_instance_vars()

    print(f"Channel names: \t{self.channel_names}")
    print(f"Channel abbreviations: \t{self.channel_abbrevs}")

__update_instance_vars()

Run after updating self.result, or other init values

Source code in pythoneeg/visualization/results.py
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
def __update_instance_vars(self):
    """Run after updating self.result, or other init values"""
    if "index" in self.result.columns:
        warnings.warn("Dropping column 'index'")
        self.result = self.result.drop(columns=["index"])

    # Check if timestamps are sorted and sort if needed
    if "timestamp" in self.result.columns:
        if not self.result["timestamp"].is_monotonic_increasing:
            warnings.warn("Timestamps are not sorted. Sorting result DataFrame by timestamp.")
            self.result = self.result.sort_values("timestamp")

    # Check for unusually short intervals between timestamps
    if "timestamp" in self.result.columns and "duration" in self.result.columns:
        median_duration = self.result["duration"].median()
        timestamp_diffs = self.result["timestamp"].diff()
        short_intervals = timestamp_diffs < pd.Timedelta(seconds=median_duration)

        # Skip first row since diff() produces NaT
        short_intervals = short_intervals[1:]

        if short_intervals.any():
            n_short = short_intervals.sum()
            pct_short = (n_short / len(short_intervals)) * 100

            warning_msg = (
                f"Found {n_short} intervals ({pct_short:.1f}%) between timestamps "
                f"that are shorter than the median duration of {median_duration:.1f}s"
            )

            if pct_short > 1.0 and not self.suppress_short_interval_error:  # More than 1% of intervals are short
                raise ValueError(warning_msg)
            elif not self.suppress_short_interval_error:
                warnings.warn(warning_msg)

    if "animal" in self.result.columns:
        unique_animals = self.result["animal"].unique()
        if len(unique_animals) > 1:
            raise ValueError(f"Multiple animals found in result: {unique_animals}")
        if unique_animals[0] != self.animal_id:
            raise ValueError(
                f"Animal ID mismatch: result has {unique_animals[0]}, but self.animal_id is {self.animal_id}"
            )

    self._feature_columns = [x for x in self.result.columns if x in constants.FEATURES]
    self._nonfeature_columns = [x for x in self.result.columns if x not in constants.FEATURES]
    self.animaldays = self.result.loc[:, "animalday"].unique()

    self.channel_abbrevs = [
        core.parse_chname_to_abbrev(x, assume_from_number=self.assume_from_number) for x in self.channel_names
    ]

add_unique_hash(nbytes=None)

Adds a hex hash to the animal ID to ensure uniqueness. This prevents collisions when, for example, multiple animals in ExperimentPlotter have the same animal ID.

Parameters:

Name Type Description Default
nbytes int

Number of bytes to generate. This is passed directly to secrets.token_hex(). Defaults to None, which generates 16 hex characters (8 bytes).

None
Source code in pythoneeg/visualization/results.py
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
def add_unique_hash(self, nbytes: int | None = None):
    """Adds a hex hash to the animal ID to ensure uniqueness. This prevents collisions when, for example, multiple animals in ExperimentPlotter have the same animal ID.

    Args:
        nbytes (int, optional): Number of bytes to generate. This is passed directly to secrets.token_hex(). Defaults to None, which generates 16 hex characters (8 bytes).
    """
    import secrets

    hash_suffix = secrets.token_hex(nbytes)
    new_animal_id = f"{self.animal_id}_{hash_suffix}"

    if "animal" in self.result.columns:
        self.result["animal"] = new_animal_id
    if "animalday" in self.result.columns:
        self.result["animalday"] = self.result["animalday"].str.replace(self.animal_id, new_animal_id)
    self.animal_id = new_animal_id

    self.__update_instance_vars()

aggregate_time_windows(groupby=['animalday', 'isday'])

Aggregate time windows into a single data point per groupby by averaging features. This reduces the number of rows in the result.

Parameters:

Name Type Description Default
groupby list[str] | str

Columns to group by. Defaults to ['animalday', 'isday'], which groups by animalday (recording session) and isday (day/night).

['animalday', 'isday']

Raises:

Type Description
ValueError

groupby must be from ['animalday', 'isday']

ValueError

Columns in groupby not found in result

ValueError

Columns in groupby are not constant in groups

Source code in pythoneeg/visualization/results.py
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
def aggregate_time_windows(self, groupby: list[str] | str = ["animalday", "isday"]) -> None:
    """Aggregate time windows into a single data point per groupby by averaging features. This reduces the number of rows in the result.

    Args:
        groupby (list[str] | str, optional): Columns to group by. Defaults to ['animalday', 'isday'], which groups by animalday (recording session) and isday (day/night).

    Raises:
        ValueError: groupby must be from ['animalday', 'isday']
        ValueError: Columns in groupby not found in result
        ValueError: Columns in groupby are not constant in groups
    """
    if isinstance(groupby, str):
        groupby = [groupby]
    if not all(col in ["animalday", "isday"] for col in groupby):
        raise ValueError(f"groupby must be from ['animalday', 'isday']. Got {groupby}")
    if not all(col in self.result.columns for col in groupby):
        raise ValueError(f"Columns {groupby} not found in result. Columns: {self.result.columns.tolist()}")

    features = [f for f in constants.FEATURES if f in self.result.columns]
    logging.debug(f"Aggregating {features}")
    result_grouped = self.result.groupby(groupby)

    agg_dict = {}

    if "animalday" not in groupby:
        agg_dict["animalday"] = lambda df: None
    if "isday" not in groupby:
        agg_dict["isday"] = lambda df: None

    constant_cols = ["animal", "day", "genotype"]
    for col in constant_cols:
        if col in self.result.columns:
            is_constant = result_grouped[col].nunique() == 1
            if not is_constant.all():
                non_constant_groups = is_constant[~is_constant].index.tolist()
                raise ValueError(f"Column {col} is not constant in groups: {non_constant_groups}")
            agg_dict[col] = lambda df, col=col: df[col].iloc[0]

    if "duration" in self.result.columns:
        agg_dict["duration"] = lambda df: np.sum(df["duration"])

    if "endfile" in self.result.columns:
        agg_dict["endfile"] = lambda df: df["endfile"].iloc[-1]

    if "timestamp" in self.result.columns:
        agg_dict["timestamp"] = lambda df: df["timestamp"].iloc[0]

    for feat in features:
        agg_dict[feat] = lambda df, feat=feat: self._average_feature(df, feat, "duration")

    aggregated_df = result_grouped.apply(
        lambda df: pd.Series({col: agg_dict[col](df) for col in self.result.columns if col not in groupby})
    )

    self.result = aggregated_df.reset_index(drop=False)  # Keep animalday/isday as a column

    self.suppress_short_interval_error = True
    logging.info("Setting suppress_short_interval_error to True")
    self.__update_instance_vars()

apply_filters(filter_config=None, min_valid_channels=3, morphological_smoothing_seconds=None)

Apply multiple filters using configuration.

Parameters:

Name Type Description Default
filter_config dict

Dictionary of filter names and parameters. Available filters: 'logrms_range', 'high_rms', 'low_rms', 'high_beta', 'reject_channels', 'reject_channels_by_session', 'morphological_smoothing'

None
min_valid_channels int

Minimum valid channels per window. Defaults to 3.

3
morphological_smoothing_seconds float

Temporal smoothing window (deprecated, use config instead)

None

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance

Examples:

>>> config = {
...     'logrms_range': {'z_range': 3},
...     'high_rms': {'max_rms': 500},
...     'reject_channels': {'bad_channels': ['LMot', 'RMot']},
...     'morphological_smoothing': {'smoothing_seconds': 8.0}
... }
>>> filtered_war = war.apply_filters(config)
Source code in pythoneeg/visualization/results.py
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
def apply_filters(
    self, filter_config: dict = None, min_valid_channels: int = 3, morphological_smoothing_seconds: float = None
) -> "WindowAnalysisResult":
    """Apply multiple filters using configuration.

    Args:
        filter_config (dict, optional): Dictionary of filter names and parameters.
            Available filters: 'logrms_range', 'high_rms', 'low_rms', 'high_beta',
            'reject_channels', 'reject_channels_by_session', 'morphological_smoothing'
        min_valid_channels (int): Minimum valid channels per window. Defaults to 3.
        morphological_smoothing_seconds (float, optional): Temporal smoothing window (deprecated, use config instead)

    Returns:
        WindowAnalysisResult: New filtered instance

    Examples:
        >>> config = {
        ...     'logrms_range': {'z_range': 3},
        ...     'high_rms': {'max_rms': 500},
        ...     'reject_channels': {'bad_channels': ['LMot', 'RMot']},
        ...     'morphological_smoothing': {'smoothing_seconds': 8.0}
        ... }
        >>> filtered_war = war.apply_filters(config)
    """
    if filter_config is None:
        filter_config = {
            "logrms_range": {"z_range": 3},
            "high_rms": {"max_rms": 500},
            "low_rms": {"min_rms": 50},
            "high_beta": {"max_beta_prop": 0.4},
            "reject_channels_by_session": {},
        }

    filter_methods = {
        "logrms_range": self.get_filter_logrms_range,
        "high_rms": self.get_filter_high_rms,
        "low_rms": self.get_filter_low_rms,
        "high_beta": self.get_filter_high_beta,
        "reject_channels": self.get_filter_reject_channels,
        "reject_channels_by_session": self.get_filter_reject_channels_by_recording_session,
    }

    filt_bools = []
    morphological_params = None

    for filter_name, filter_params in filter_config.items():
        if filter_name == "morphological_smoothing":
            morphological_params = filter_params
            continue

        if filter_name not in filter_methods:
            raise ValueError(
                f"Unknown filter: {filter_name}. Available: {list(filter_methods.keys()) + ['morphological_smoothing']}"
            )

        filter_func = filter_methods[filter_name]
        filt_bool = filter_func(**filter_params)
        filt_bools.append(filt_bool)
        logging.info(f"{filter_name}: filtered {filt_bool.size - np.count_nonzero(filt_bool)}/{filt_bool.size}")

    # Combine all filter masks
    if filt_bools:
        filt_bool_all = np.prod(np.stack(filt_bools, axis=-1), axis=-1).astype(bool)
    else:
        filt_bool_all = np.ones((len(self.result), len(self.channel_names)), dtype=bool)

    # Apply morphological smoothing if requested (either from config or parameter)
    if morphological_params or morphological_smoothing_seconds is not None:
        if morphological_params:
            smoothing_seconds = morphological_params["smoothing_seconds"]
        else:
            smoothing_seconds = morphological_smoothing_seconds

        filt_bool_all = self.get_filter_morphological_smoothing(filt_bool_all, smoothing_seconds)
        logging.info(f"Applied morphological smoothing: {smoothing_seconds}s")

    # Filter windows based on minimum valid channels
    valid_channels_per_window = np.sum(filt_bool_all, axis=1)
    window_mask = valid_channels_per_window >= min_valid_channels
    filt_bool_all = filt_bool_all & window_mask[:, np.newaxis]

    return self._create_filtered_copy(filt_bool_all)

filter_all(df=None, inplace=True, bad_channels=None, min_valid_channels=3, filters=None, morphological_smoothing_seconds=None, **kwargs)

Apply a list of filters to the data. Filtering should be performed before aggregation.

Parameters:

Name Type Description Default
df DataFrame

If not None, this function will use this dataframe instead of self.result. Defaults to None.

None
inplace bool

If True, modify the result in place. Defaults to True.

True
bad_channels list[str]

List of channels to reject. Defaults to None.

None
min_valid_channels int

Minimum number of valid channels required per window. Defaults to 3.

3
filters list[callable]

List of filter functions to apply. Each function should return a boolean mask. If None, uses default filters: [get_filter_logrms_range, get_filter_high_rms, get_filter_low_rms, get_filter_high_beta]. Defaults to None.

None
morphological_smoothing_seconds float

If provided, apply morphological opening/closing to smooth the filter mask. This removes isolated false positives/negatives along the time axis for each channel independently. The value specifies the time window in seconds for the morphological operations. Defaults to None.

None
**kwargs

Additional keyword arguments to pass to filter functions.

{}

Returns:

Name Type Description
WindowAnalysisResult

Filtered result

Source code in pythoneeg/visualization/results.py
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
def filter_all(
    self,
    df: pd.DataFrame = None,
    inplace=True,
    bad_channels: list[str] = None,
    min_valid_channels=3,
    filters: list[callable] = None,
    morphological_smoothing_seconds: float = None,
    **kwargs,
):
    """Apply a list of filters to the data. Filtering should be performed before aggregation.

    Args:
        df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
        inplace (bool, optional): If True, modify the result in place. Defaults to True.
        bad_channels (list[str], optional): List of channels to reject. Defaults to None.
        min_valid_channels (int, optional): Minimum number of valid channels required per window. Defaults to 3.
        filters (list[callable], optional): List of filter functions to apply. Each function should return a boolean mask.
            If None, uses default filters: [get_filter_logrms_range, get_filter_high_rms, get_filter_low_rms, get_filter_high_beta].
            Defaults to None.
        morphological_smoothing_seconds (float, optional): If provided, apply morphological opening/closing to smooth the filter mask.
            This removes isolated false positives/negatives along the time axis for each channel independently.
            The value specifies the time window in seconds for the morphological operations. Defaults to None.
        **kwargs: Additional keyword arguments to pass to filter functions.

    Returns:
        WindowAnalysisResult: Filtered result
    """
    if filters is None:
        # TODO refactor these into standalone functions, which take in a war as the first parameter, then pass
        # filt_bool = filt(self, df, **kwargs) as needed
        filters = [
            self.get_filter_logrms_range,
            self.get_filter_high_rms,
            self.get_filter_low_rms,
            self.get_filter_high_beta,
            self.get_filter_reject_channels_by_recording_session,
        ]

    filt_bools = []
    # Apply each filter function
    for filter_function in filters:
        filt_bool = filter_function(df, **kwargs)
        filt_bools.append(filt_bool)
        logging.info(
            f"{filter_function.__name__}:\tfiltered {filt_bool.size - np.count_nonzero(filt_bool)}/{filt_bool.size}"
        )

    # Filter channels manually
    # REVIEW somehow add this to the main list of filters, but I'm not sure how to do this.
    if bad_channels is not None:
        filt_bools.append(self.get_filter_reject_channels(bad_channels))
        logging.debug(f"Reject channels: {filt_bools[-1]}")

    # Apply all filters
    filt_bool_all = np.prod(np.stack(filt_bools, axis=-1), axis=-1).astype(bool)
    logging.debug(f"filt_bool_all.shape: {filt_bool_all.shape}")  # (windows, channels)

    # Apply morphological smoothing if requested
    if morphological_smoothing_seconds is not None:
        if "duration" not in self.result.columns:
            raise ValueError("Cannot calculate window duration - 'duration' column missing from result dataframe")
        window_duration = self.result["duration"].median()

        # Calculate number of windows for the smoothing
        structure_size = max(1, int(morphological_smoothing_seconds / window_duration))

        if structure_size > 1:
            logging.info(
                f"Applying morphological smoothing with {structure_size} windows ({morphological_smoothing_seconds}s / {window_duration}s per window)"
            )
            # Apply channel-wise temporal smoothing (each channel processed independently)
            # This avoids spatial assumptions while smoothing temporal artifacts
            for ch_idx in range(filt_bool_all.shape[1]):
                channel_mask = filt_bool_all[:, ch_idx]
                # Opening removes small isolated artifacts
                channel_mask = binary_opening(channel_mask, structure=np.ones(structure_size))
                # Closing fills small gaps in valid data
                channel_mask = binary_closing(channel_mask, structure=np.ones(structure_size))
                filt_bool_all[:, ch_idx] = channel_mask
        else:
            logging.info("Skipping morphological smoothing - structure size would be 1 (no effect)")

    # Filter windows based on number of valid channels
    valid_channels_per_window = np.sum(filt_bool_all, axis=1)  # axis 1 = channel
    window_mask = valid_channels_per_window >= min_valid_channels  # True if window has enough valid channels
    filt_bool_all = filt_bool_all & window_mask[:, np.newaxis]  # Apply window mask to all channels

    filtered_result = self._apply_filter(filt_bool_all)
    if inplace:
        del self.result
        self.result = filtered_result
    return WindowAnalysisResult(
        filtered_result,
        self.animal_id,
        self.genotype,
        self.channel_names,
        self.assume_from_number,
        self.bad_channels_dict,
        self.suppress_short_interval_error,
    )

filter_high_beta(max_beta_prop=0.4)

Filter out windows with high beta power.

Parameters:

Name Type Description Default
max_beta_prop float

Maximum beta power proportion. Defaults to 0.4.

0.4

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance

Source code in pythoneeg/visualization/results.py
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
def filter_high_beta(self, max_beta_prop: float = 0.4) -> "WindowAnalysisResult":
    """Filter out windows with high beta power.

    Args:
        max_beta_prop (float): Maximum beta power proportion. Defaults to 0.4.

    Returns:
        WindowAnalysisResult: New filtered instance
    """
    mask = self.get_filter_high_beta(max_beta_prop=max_beta_prop)
    return self._create_filtered_copy(mask)

filter_high_rms(max_rms=500)

Filter out windows with RMS above threshold.

Parameters:

Name Type Description Default
max_rms float

Maximum RMS threshold. Defaults to 500.

500

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance

Source code in pythoneeg/visualization/results.py
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
def filter_high_rms(self, max_rms: float = 500) -> "WindowAnalysisResult":
    """Filter out windows with RMS above threshold.

    Args:
        max_rms (float): Maximum RMS threshold. Defaults to 500.

    Returns:
        WindowAnalysisResult: New filtered instance
    """
    mask = self.get_filter_high_rms(max_rms=max_rms)
    return self._create_filtered_copy(mask)

filter_logrms_range(z_range=3)

Filter based on log(rms) z-score range.

Parameters:

Name Type Description Default
z_range float

Z-score range threshold. Defaults to 3.

3

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance

Source code in pythoneeg/visualization/results.py
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
def filter_logrms_range(self, z_range: float = 3) -> "WindowAnalysisResult":
    """Filter based on log(rms) z-score range.

    Args:
        z_range (float): Z-score range threshold. Defaults to 3.

    Returns:
        WindowAnalysisResult: New filtered instance
    """
    mask = self.get_filter_logrms_range(z_range=z_range)
    return self._create_filtered_copy(mask)

filter_low_rms(min_rms=50)

Filter out windows with RMS below threshold.

Parameters:

Name Type Description Default
min_rms float

Minimum RMS threshold. Defaults to 50.

50

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance

Source code in pythoneeg/visualization/results.py
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
def filter_low_rms(self, min_rms: float = 50) -> "WindowAnalysisResult":
    """Filter out windows with RMS below threshold.

    Args:
        min_rms (float): Minimum RMS threshold. Defaults to 50.

    Returns:
        WindowAnalysisResult: New filtered instance
    """
    mask = self.get_filter_low_rms(min_rms=min_rms)
    return self._create_filtered_copy(mask)

filter_morphological_smoothing(smoothing_seconds)

Apply morphological smoothing to all data.

Parameters:

Name Type Description Default
smoothing_seconds float

Time window in seconds for morphological operations

required

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance

Source code in pythoneeg/visualization/results.py
984
985
986
987
988
989
990
991
992
993
994
995
996
def filter_morphological_smoothing(self, smoothing_seconds: float) -> "WindowAnalysisResult":
    """Apply morphological smoothing to all data.

    Args:
        smoothing_seconds (float): Time window in seconds for morphological operations

    Returns:
        WindowAnalysisResult: New filtered instance
    """
    # Start with all-True mask and smooth it
    base_mask = np.ones((len(self.result), len(self.channel_names)), dtype=bool)
    smoothed_mask = self.get_filter_morphological_smoothing(base_mask, smoothing_seconds)
    return self._create_filtered_copy(smoothed_mask)

filter_reject_channels(bad_channels, use_abbrevs=None)

Filter out specified bad channels.

Parameters:

Name Type Description Default
bad_channels list[str]

List of channel names to reject

required
use_abbrevs bool

Whether to use abbreviations. Defaults to None.

None

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance

Source code in pythoneeg/visualization/results.py
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
def filter_reject_channels(self, bad_channels: list[str], use_abbrevs: bool = None) -> "WindowAnalysisResult":
    """Filter out specified bad channels.

    Args:
        bad_channels (list[str]): List of channel names to reject
        use_abbrevs (bool, optional): Whether to use abbreviations. Defaults to None.

    Returns:
        WindowAnalysisResult: New filtered instance
    """
    mask = self.get_filter_reject_channels(bad_channels, use_abbrevs=use_abbrevs)
    return self._create_filtered_copy(mask)

filter_reject_channels_by_session(bad_channels_dict=None, use_abbrevs=None)

Filter out bad channels by recording session.

Parameters:

Name Type Description Default
bad_channels_dict dict[str, list[str]]

Dict of bad channels per session

None
use_abbrevs bool

Whether to use abbreviations. Defaults to None.

None

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance

Source code in pythoneeg/visualization/results.py
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
def filter_reject_channels_by_session(
    self, bad_channels_dict: dict[str, list[str]] = None, use_abbrevs: bool = None
) -> "WindowAnalysisResult":
    """Filter out bad channels by recording session.

    Args:
        bad_channels_dict (dict[str, list[str]], optional): Dict of bad channels per session
        use_abbrevs (bool, optional): Whether to use abbreviations. Defaults to None.

    Returns:
        WindowAnalysisResult: New filtered instance
    """
    mask = self.get_filter_reject_channels_by_recording_session(bad_channels_dict, use_abbrevs=use_abbrevs)
    return self._create_filtered_copy(mask)

get_filter_high_beta(df=None, max_beta_prop=0.4, **kwargs)

Filter windows based on beta power.

Parameters:

Name Type Description Default
df DataFrame

If not None, this function will use this dataframe instead of self.result. Defaults to None.

None
max_beta_prop float

The maximum beta power to filter by. Values above this will be set to NaN. Defaults to 0.4.

0.4

Returns:

Name Type Description
out

np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window

Source code in pythoneeg/visualization/results.py
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
def get_filter_high_beta(self, df: pd.DataFrame = None, max_beta_prop=0.4, **kwargs):
    """Filter windows based on beta power.

    Args:
        df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
        max_beta_prop (float, optional): The maximum beta power to filter by. Values above this will be set to NaN. Defaults to 0.4.

    Returns:
        out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
    """
    result = df.copy() if df is not None else self.result.copy()
    if "psdfrac" in result.columns:
        df_psdfrac = pd.DataFrame(result["psdfrac"].tolist())
        np_prop = np.array(df_psdfrac["beta"].tolist())
    elif "psdband" in result.columns and "psdtotal" in result.columns:
        df_psdband = pd.DataFrame(result["psdband"].tolist())
        np_beta = np.array(df_psdband["beta"].tolist())
        np_total = np.array(result["psdtotal"].tolist())
        np_prop = np_beta / np_total
    else:
        raise ValueError("psdfrac or psdband+psdtotal required for beta power filtering")

    out = np.full(np_prop.shape, True)
    out[np_prop > max_beta_prop] = False
    out = np.broadcast_to(np.all(out, axis=-1)[:, np.newaxis], out.shape)
    return out

get_filter_high_rms(df=None, max_rms=500, **kwargs)

Filter windows based on rms.

Parameters:

Name Type Description Default
df DataFrame

If not None, this function will use this dataframe instead of self.result. Defaults to None.

None
max_rms float

The maximum rms value to filter by. Values above this will be set to NaN.

500

Returns:

Name Type Description
out

np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window

Source code in pythoneeg/visualization/results.py
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
def get_filter_high_rms(self, df: pd.DataFrame = None, max_rms=500, **kwargs):
    """Filter windows based on rms.

    Args:
        df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
        max_rms (float, optional): The maximum rms value to filter by. Values above this will be set to NaN.

    Returns:
        out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
    """
    result = df.copy() if df is not None else self.result.copy()
    np_rms = np.array(result["rms"].tolist())
    np_rmsnan = np_rms.copy()
    # Convert to float to allow NaN assignment for integer arrays
    if np_rmsnan.dtype.kind in ("i", "u"):  # integer types
        np_rmsnan = np_rmsnan.astype(float)
    np_rmsnan[np_rms > max_rms] = np.nan
    result["rms"] = np_rmsnan.tolist()

    out = np.full(np_rms.shape, True)
    out[np_rms > max_rms] = False
    return out

get_filter_logrms_range(df=None, z_range=3, **kwargs)

Filter windows based on log(rms).

Parameters:

Name Type Description Default
df DataFrame

If not None, this function will use this dataframe instead of self.result. Defaults to None.

None
z_range float

The z-score range to filter by. Values outside this range will be set to NaN.

3

Returns:

Name Type Description
out

np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window

Source code in pythoneeg/visualization/results.py
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
def get_filter_logrms_range(self, df: pd.DataFrame = None, z_range=3, **kwargs):
    """Filter windows based on log(rms).

    Args:
        df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
        z_range (float, optional): The z-score range to filter by. Values outside this range will be set to NaN.

    Returns:
        out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
    """
    result = df.copy() if df is not None else self.result.copy()
    z_range = abs(z_range)
    np_rms = np.array(result["rms"].tolist())
    np_logrms = np.log(np_rms)
    del np_rms
    np_logrmsz = zscore(np_logrms, axis=0, nan_policy="omit")
    np_logrms[(np_logrmsz > z_range) | (np_logrmsz < -z_range)] = np.nan

    out = np.full(np_logrms.shape, True)
    out[(np_logrmsz > z_range) | (np_logrmsz < -z_range)] = False
    return out

get_filter_low_rms(df=None, min_rms=30, **kwargs)

Filter windows based on rms.

Parameters:

Name Type Description Default
df DataFrame

If not None, this function will use this dataframe instead of self.result. Defaults to None.

None
min_rms float

The minimum rms value to filter by. Values below this will be set to NaN.

30

Returns:

Name Type Description
out

np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window

Source code in pythoneeg/visualization/results.py
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
def get_filter_low_rms(self, df: pd.DataFrame = None, min_rms=30, **kwargs):
    """Filter windows based on rms.

    Args:
        df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
        min_rms (float, optional): The minimum rms value to filter by. Values below this will be set to NaN.

    Returns:
        out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
    """
    result = df.copy() if df is not None else self.result.copy()
    np_rms = np.array(result["rms"].tolist())
    np_rmsnan = np_rms.copy()
    np_rmsnan[np_rms < min_rms] = np.nan
    result["rms"] = np_rmsnan.tolist()

    out = np.full(np_rms.shape, True)
    out[np_rms < min_rms] = False
    return out

get_filter_morphological_smoothing(filter_mask, smoothing_seconds, **kwargs)

Apply morphological smoothing to a filter mask.

Parameters:

Name Type Description Default
filter_mask ndarray

Input boolean mask of shape (n_windows, n_channels)

required
smoothing_seconds float

Time window in seconds for morphological operations

required

Returns:

Type Description
ndarray

np.ndarray: Smoothed boolean mask

Source code in pythoneeg/visualization/results.py
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
def get_filter_morphological_smoothing(
    self, filter_mask: np.ndarray, smoothing_seconds: float, **kwargs
) -> np.ndarray:
    """Apply morphological smoothing to a filter mask.

    Args:
        filter_mask (np.ndarray): Input boolean mask of shape (n_windows, n_channels)
        smoothing_seconds (float): Time window in seconds for morphological operations

    Returns:
        np.ndarray: Smoothed boolean mask
    """
    if "duration" not in self.result.columns:
        raise ValueError("Cannot calculate window duration - 'duration' column missing")

    window_duration = self.result["duration"].median()
    structure_size = max(1, int(smoothing_seconds / window_duration))

    if structure_size <= 1:
        return filter_mask

    smoothed_mask = filter_mask.copy()
    for ch_idx in range(filter_mask.shape[1]):
        channel_mask = filter_mask[:, ch_idx]
        # Opening removes small isolated artifacts
        channel_mask = binary_opening(channel_mask, structure=np.ones(structure_size))
        # Closing fills small gaps in valid data
        channel_mask = binary_closing(channel_mask, structure=np.ones(structure_size))
        smoothed_mask[:, ch_idx] = channel_mask

    return smoothed_mask

get_filter_reject_channels(bad_channels, use_abbrevs=None, **kwargs)

Filter channels to reject.

Parameters:

Name Type Description Default
bad_channels list[str]

List of channels to reject. Can be either full channel names or abbreviations. The method will automatically detect which format is being used.

required
use_abbrevs bool

Override automatic detection. If True, channels are assumed to be channel abbreviations. If False, channels are assumed to be channel names. If None, channels are parsed to abbreviations and matched against self.channel_abbrevs.

None

Returns:

Name Type Description
out

np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window

Source code in pythoneeg/visualization/results.py
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
def get_filter_reject_channels(self, bad_channels: list[str], use_abbrevs: bool = None, **kwargs):
    """Filter channels to reject.

    Args:
        bad_channels (list[str]): List of channels to reject. Can be either full channel names or abbreviations.
            The method will automatically detect which format is being used.
        use_abbrevs (bool, optional): Override automatic detection. If True, channels are assumed to be channel abbreviations. If False, channels are assumed to be channel names.
            If None, channels are parsed to abbreviations and matched against self.channel_abbrevs.

    Returns:
        out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
    """
    channel_targets = (
        self.channel_abbrevs if use_abbrevs or use_abbrevs is None else self.channel_names
    )  # Match to appropriate target
    if use_abbrevs is None:  # Match channels as abbreviations
        bad_channels = [
            core.utils.parse_chname_to_abbrev(ch, assume_from_number=self.assume_from_number) for ch in bad_channels
        ]

    n_samples = len(self.result)
    n_channels = len(channel_targets)
    mask = np.ones((n_samples, n_channels), dtype=bool)

    # Match channels to channel_targets
    for ch in bad_channels:
        if ch in channel_targets:
            mask[:, channel_targets.index(ch)] = False
        else:
            warnings.warn(f"Channel {ch} not found in {channel_targets}")
    return mask

get_filter_reject_channels_by_recording_session(bad_channels_dict=None, use_abbrevs=None)

Filter channels to reject for each recording session

Parameters:

Name Type Description Default
bad_channels_dict dict[str, list[str]]

Dictionary of list of channels to reject for each recording session. Can be either full channel names or abbreviations. The method will automatically detect which format is being used. If None, the method will use the bad_channels_dict passed to the constructor.

None
use_abbrevs bool

Override automatic detection. If True, channels are assumed to be channel abbreviations. If False, channels are assumed to be channel names. If None, channels are parsed to abbreviations and matched against self.channel_abbrevs.

None

Returns:

Name Type Description
out

np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window

Source code in pythoneeg/visualization/results.py
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
def get_filter_reject_channels_by_recording_session(
    self, bad_channels_dict: dict[str, list[str]] = None, use_abbrevs: bool = None
):
    """Filter channels to reject for each recording session

    Args:
        bad_channels_dict (dict[str, list[str]]): Dictionary of list of channels to reject for each recording session.
            Can be either full channel names or abbreviations. The method will automatically detect which format is being used.
            If None, the method will use the bad_channels_dict passed to the constructor.
        use_abbrevs (bool, optional): Override automatic detection. If True, channels are assumed to be channel abbreviations. If False, channels are assumed to be channel names.
            If None, channels are parsed to abbreviations and matched against self.channel_abbrevs.

    Returns:
        out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
    """
    if bad_channels_dict is None:
        bad_channels_dict = self.bad_channels_dict

    n_samples = len(self.result)
    n_channels = len(self.channel_names)
    mask = np.ones((n_samples, n_channels), dtype=bool)

    # Group by animalday to apply filters per recording session
    for animalday, group in self.result.groupby("animalday"):
        if animalday not in bad_channels_dict:
            logging.warning(f"No bad channels specified for recording session {animalday}")
            continue

        bad_channels = bad_channels_dict[animalday]
        channel_targets = self.channel_abbrevs if use_abbrevs or use_abbrevs is None else self.channel_names
        if use_abbrevs is None:
            bad_channels = [
                core.parse_chname_to_abbrev(ch, assume_from_number=self.assume_from_number) for ch in bad_channels
            ]

        # Get indices for this recording session
        session_indices = group.index

        # Apply channel filtering for this session
        for ch in bad_channels:
            if ch in channel_targets:
                ch_idx = channel_targets.index(ch)
                mask[session_indices, ch_idx] = False
            else:
                logging.warning(f"Channel {ch} not found in {channel_targets} for session {animalday}")

    return mask

get_groupavg_result(features, exclude=[], df=None, groupby='animalday')

Group result and average within groups. Preserves data structure and shape for each feature.

Parameters:

Name Type Description Default
features list[str]

List of features to get from result

required
exclude list[str]

List of features to exclude from result. Will override the features parameter. Defaults to [].

[]
df DataFrame

If not None, this function will use this dataframe instead of self.result. Defaults to None.

None
groupby str

Feature or list of features to group by before averaging. Passed to the by parameter in pd.DataFrame.groupby(). Defaults to "animalday".

'animalday'

Returns:

Name Type Description
grouped_result

result grouped by groupby and averaged for each group.

Source code in pythoneeg/visualization/results.py
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
def get_groupavg_result(
    self, features: list[str], exclude: list[str] = [], df: pd.DataFrame = None, groupby="animalday"
):
    """Group result and average within groups. Preserves data structure and shape for each feature.

    Args:
        features (list[str]): List of features to get from result
        exclude (list[str], optional): List of features to exclude from result. Will override the features parameter. Defaults to [].
        df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
        groupby (str, optional): Feature or list of features to group by before averaging. Passed to the `by` parameter in pd.DataFrame.groupby(). Defaults to "animalday".

    Returns:
        grouped_result: result grouped by `groupby` and averaged for each group.
    """
    result_grouped, result_validcols = self.__get_groups(features=features, exclude=exclude, df=df, groupby=groupby)
    features = _sanitize_feature_request(features, exclude)

    avg_results = []
    for f in features:
        if f in result_validcols:
            avg_result_col = result_grouped.apply(self._average_feature, f, "duration", include_groups=False)
            avg_result_col.name = f
            avg_results.append(avg_result_col)
        else:
            logging.warning(f"{f} not calculated, skipping")

    return pd.concat(avg_results, axis=1)

get_info()

Returns a formatted string with basic information about the WindowAnalysisResult object

Source code in pythoneeg/visualization/results.py
702
703
704
705
706
707
708
709
710
711
712
713
714
715
def get_info(self):
    """Returns a formatted string with basic information about the WindowAnalysisResult object"""
    info = []
    info.append(f"feature names: {', '.join(self._feature_columns)}")
    info.append(f"animaldays: {', '.join(self.result['animalday'].unique())}")
    info.append(
        f"animal_id: {self.result['animal'].unique()[0] if 'animal' in self.result.columns else self.animal_id}"
    )
    info.append(
        f"genotype: {self.result['genotype'].unique()[0] if 'genotype' in self.result.columns else self.genotype}"
    )
    info.append(f"channel_names: {', '.join(self.channel_names) if self.channel_names else 'None'}")

    return "\n".join(info)

get_result(features, exclude=[], allow_missing=False)

Get windowed analysis result dataframe, with helpful filters

Parameters:

Name Type Description Default
features list[str]

List of features to get from result

required
exclude list[str]

List of features to exclude from result; will override the features parameter. Defaults to [].

[]
allow_missing bool

If True, will return all requested features as columns regardless if they exist in result. Defaults to False.

False

Returns:

Name Type Description
result

pd.DataFrame object with features in columns and windows in rows

Source code in pythoneeg/visualization/results.py
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
def get_result(self, features: list[str], exclude: list[str] = [], allow_missing=False):
    """Get windowed analysis result dataframe, with helpful filters

    Args:
        features (list[str]): List of features to get from result
        exclude (list[str], optional): List of features to exclude from result; will override the features parameter. Defaults to [].
        allow_missing (bool, optional): If True, will return all requested features as columns regardless if they exist in result. Defaults to False.

    Returns:
        result: pd.DataFrame object with features in columns and windows in rows
    """
    features = _sanitize_feature_request(features, exclude)
    if not allow_missing:
        return self.result.loc[:, self._nonfeature_columns + features]
    else:
        return self.result.reindex(columns=self._nonfeature_columns + features)

load_pickle_and_json(folder_path=None) classmethod

Load WindowAnalysisResult from folder

Parameters:

Name Type Description Default
folder_path str

Path of folder containing one .pkl and .json file each. Defaults to None.

None
df_pickle_path str

Path of .pkl file. If this and folder_path are not None, raises an error. Defaults to None.

required
json_path str

Path of .json file. If this and folder_path are not None, raises an error. Defaults to None.

required

Raises:

Type Description
ValueError

Both df_pickle_path and json_path must be None if folder_path is provided

ValueError

Expected exactly one pickle and one json file in folder_path

Returns:

Name Type Description
result

WindowAnalysisResult object

Source code in pythoneeg/visualization/results.py
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
@classmethod
def load_pickle_and_json(cls, folder_path=None):
    """Load WindowAnalysisResult from folder

    Args:
        folder_path (str, optional): Path of folder containing one .pkl and .json file each. Defaults to None.
        df_pickle_path (str, optional): Path of .pkl file. If this and folder_path are not None, raises an error. Defaults to None.
        json_path (str, optional): Path of .json file. If this and folder_path are not None, raises an error. Defaults to None.

    Raises:
        ValueError: Both df_pickle_path and json_path must be None if folder_path is provided
        ValueError: Expected exactly one pickle and one json file in folder_path

    Returns:
        result: WindowAnalysisResult object
    """
    if folder_path is not None:
        folder_path = Path(folder_path)
        if not folder_path.exists():
            raise ValueError(f"Folder path {folder_path} does not exist")

        pkl_files = list(folder_path.glob("*.pkl"))
        json_files = list(folder_path.glob("*.json"))

        if len(pkl_files) != 1 or len(json_files) != 1:
            raise ValueError(f"Expected exactly one pickle and one json file in {folder_path}")

        df_pickle_path = pkl_files[0]
        json_path = json_files[0]

    with open(df_pickle_path, "rb") as f:
        data = pd.read_pickle(f)
    with open(json_path, "r") as f:
        metadata = json.load(f)
    return cls(data, **metadata)

reorder_and_pad_channels(target_channels, use_abbrevs=True, inplace=True)

Reorder and pad channels to match a target channel list.

This method ensures that the data has a consistent channel order and structure by reordering existing channels and padding missing channels with NaNs.

Parameters:

Name Type Description Default
target_channels list[str]

List of target channel names to match

required
use_abbrevs bool

If True, target channel names are read as channel abbreviations instead of channel names. Defaults to True.

True
inplace bool

If True, modify the result in place. Defaults to True.

True

Returns: pd.DataFrame: DataFrame with reordered and padded channels

Source code in pythoneeg/visualization/results.py
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
def reorder_and_pad_channels(
    self, target_channels: list[str], use_abbrevs: bool = True, inplace: bool = True
) -> pd.DataFrame:
    """Reorder and pad channels to match a target channel list.

    This method ensures that the data has a consistent channel order and structure
    by reordering existing channels and padding missing channels with NaNs.

    Args:
        target_channels (list[str]): List of target channel names to match
        use_abbrevs (bool, optional): If True, target channel names are read as channel abbreviations instead of channel names. Defaults to True.
        inplace (bool, optional): If True, modify the result in place. Defaults to True.
    Returns:
        pd.DataFrame: DataFrame with reordered and padded channels
    """
    duplicates = [ch for ch in target_channels if target_channels.count(ch) > 1]
    if duplicates:
        raise ValueError(f"Target channels must be unique. Found duplicates: {duplicates}")

    result = self.result.copy()

    channel_map = {ch: i for i, ch in enumerate(target_channels)}
    channel_names = self.channel_names if not use_abbrevs else self.channel_abbrevs

    valid_channels = [ch for ch in channel_names if ch in channel_map]
    if not valid_channels:
        warnings.warn(
            f"None of the channel names {channel_names} were found in target channels {target_channels}. Is use_abbrevs correctly set?"
        )

    for feature in self._feature_columns:
        match feature:
            case _ if feature in constants.LINEAR_FEATURES + constants.BAND_FEATURES:
                if feature in constants.BAND_FEATURES:
                    df_bands = pd.DataFrame(result[feature].tolist())
                    vals = np.array(df_bands.values.tolist())
                    vals = vals.transpose((0, 2, 1))
                    keys = df_bands.keys()
                else:
                    vals = np.array(result[feature].tolist())

                new_vals = np.full((vals.shape[0], len(target_channels), *vals.shape[2:]), np.nan)  # dubious

                for i, ch in enumerate(channel_names):
                    if ch in channel_map:
                        new_vals[:, channel_map[ch]] = vals[:, i]

                if feature in constants.BAND_FEATURES:
                    new_vals = new_vals.transpose((0, 2, 1))
                    result[feature] = [dict(zip(keys, vals)) for vals in new_vals]
                else:
                    result[feature] = [list(x) for x in new_vals]

            case _ if feature in constants.MATRIX_FEATURES:
                if feature in ["cohere", "zcohere", "imcoh", "zimcoh"]:
                    df_bands = pd.DataFrame(result[feature].tolist())
                    vals = np.array(df_bands.values.tolist())
                    keys = df_bands.keys()
                else:
                    vals = np.array(result[feature].tolist())

                logging.debug(f"vals.shape: {vals.shape}")
                new_shape = list(vals.shape[:-2]) + [len(target_channels), len(target_channels)]
                new_vals = np.full(new_shape, np.nan)

                ch1_valid = np.array([ch in channel_map for ch in channel_names])
                ch2_valid = ch1_valid.copy()
                valid_pairs = np.logical_and(ch1_valid[:, None], ch2_valid[None, :])  # 2D boolean mask

                for i, j in zip(*np.where(valid_pairs)):
                    ch1, ch2 = channel_names[i], channel_names[j]
                    new_vals[..., channel_map[ch1], channel_map[ch2]] = vals[..., i, j]

                triu_mask = np.triu_indices(len(target_channels), k=0)
                new_vals += new_vals.transpose((*range(new_vals.ndim - 2), -1, -2))
                new_vals[..., triu_mask[0], triu_mask[1]] = 0

                if feature in ["cohere", "zcohere", "imcoh", "zimcoh"]:
                    result[feature] = [dict(zip(keys, vals)) for vals in new_vals]
                else:
                    result[feature] = [list(x) for x in new_vals]

            case _ if feature in constants.HIST_FEATURES:
                coords = np.array([x[0] for x in result[feature].tolist()])
                vals = np.array([x[1] for x in result[feature].tolist()])
                new_vals = np.full((*vals.shape[0:-1], len(target_channels)), np.nan)

                for i, ch in enumerate(channel_names):
                    if ch in channel_map:
                        new_vals[:, ..., channel_map[ch]] = vals[:, ..., i]

                result[feature] = [(coords[i], new_vals[i]) for i in range(len(coords))]

            case _:
                raise ValueError(f"Invalid feature: {feature}")

    if inplace:
        self.result = result

        logging.debug(f"Old channel names: {self.channel_names}")
        self.channel_names = target_channels
        logging.debug(f"New channel names: {self.channel_names}")

        logging.debug(f"Old channel abbreviations: {self.channel_abbrevs}")
        self.__update_instance_vars()
        logging.debug(f"New channel abbreviations: {self.channel_abbrevs}")

    return result

save_pickle_and_json(folder, make_folder=True, slugify_filebase=True, save_abbrevs_as_chnames=False)

Archive window analysis result into the folder specified, as a pickle and json file.

Parameters:

Name Type Description Default
folder str | Path

Destination folder to save results to

required
make_folder bool

If True, create the folder if it doesn't exist. Defaults to True.

True
slugify_filebase bool

If True, slugify the filebase (replace special characters). Defaults to True.

True
save_abbrevs_as_chnames bool

If True, save the channel abbreviations as the channel names in the json file. Defaults to False.

False
Source code in pythoneeg/visualization/results.py
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
def save_pickle_and_json(
    self, folder: str | Path, make_folder=True, slugify_filebase=True, save_abbrevs_as_chnames=False
):
    """Archive window analysis result into the folder specified, as a pickle and json file.

    Args:
        folder (str | Path): Destination folder to save results to
        make_folder (bool, optional): If True, create the folder if it doesn't exist. Defaults to True.
        slugify_filebase (bool, optional): If True, slugify the filebase (replace special characters). Defaults to True.
        save_abbrevs_as_chnames (bool, optional): If True, save the channel abbreviations as the channel names in the json file. Defaults to False.
    """
    folder = Path(folder)
    if make_folder:
        folder.mkdir(parents=True, exist_ok=True)

    if slugify_filebase:
        filebase = folder / slugify(f"{self.animal_id}-{self.genotype}")
    else:
        filebase = folder / f"{self.animal_id}-{self.genotype}"
    filebase = str(filebase)

    self.result.to_pickle(filebase + ".pkl")
    json_dict = {
        "animal_id": self.animal_id,
        "genotype": self.genotype,
        "channel_names": self.channel_abbrevs if save_abbrevs_as_chnames else self.channel_names,
        "assume_from_number": False if save_abbrevs_as_chnames else self.assume_from_number,
        "bad_channels_dict": self.bad_channels_dict,
        "suppress_short_interval_error": self.suppress_short_interval_error,
    }

    with open(filebase + ".json", "w") as f:
        json.dump(json_dict, f, indent=2)

bin_spike_times(spike_times, fragment_durations)

Bin spike times into counts based on fragment durations.

Parameters:

Name Type Description Default
spike_times list[float]

List of spike timestamps in seconds

required
fragment_durations list[float]

List of fragment durations in seconds

required

Returns:

Type Description
list[int]

list[int]: List of spike counts per fragment

Source code in pythoneeg/visualization/results.py
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
def bin_spike_times(spike_times: list[float], fragment_durations: list[float]) -> list[int]:
    """Bin spike times into counts based on fragment durations.

    Args:
        spike_times (list[float]): List of spike timestamps in seconds
        fragment_durations (list[float]): List of fragment durations in seconds

    Returns:
        list[int]: List of spike counts per fragment
    """
    # Convert fragment durations to bin edges
    bin_edges = np.cumsum([0] + fragment_durations)

    # Use numpy's histogram function to count spikes in each bin
    counts, _ = np.histogram(spike_times, bins=bin_edges)

    return counts.tolist()