Skip to content

Results

AnimalOrganizer

Bases: AnimalFeatureParser

Source code in pythoneeg/visualization/results.py
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
class AnimalOrganizer(AnimalFeatureParser):
    def __init__(
        self,
        base_folder_path,
        anim_id: str,
        day_sep: str | None = None,
        mode: Literal["nest", "concat", "base", "noday"] = "concat",
        assume_from_number=False,
        skip_days: list[str] = [],
        truncate: bool | int = False,
        lro_kwargs: dict = {},
    ) -> None:
        """
        AnimalOrganizer is used to organize data from a single animal into a format that can be used for analysis.
        It is used to organize data from a single animal into a format that can be used for analysis.

        Args:
            base_folder_path (str): The path to the base folder of the animal data.
            anim_id (str): The ID of the animal. This should correspond to only one animal.
            day_sep (str, optional): Separator for day in folder name. Set to None or empty string to get all folders. Defaults to None.
            mode (Literal["nest", "concat", "base", "noday"], optional): The mode of the AnimalOrganizer. Defaults to "concat".
                File structure patterns (where * indicates search location):
                "nest": base_folder_path / animal_id / *date_format* (looks for folders/files within animal_id subdirectories)
                "concat": base_folder_path / *animal_id*date_format* (looks for folders/files with animal_id+date in name at base level)
                "base": base_folder_path / * (looks for folders/files directly in base_folder_path)
                "noday": base_folder_path / *animal_id* (same as concat but expects single unique match, no date filtering)
            assume_from_number (bool, optional): Whether to assume the animal ID is a number. Defaults to False.
            skip_days (list[str], optional): The days to skip. Defaults to [].
            truncate (bool|int, optional): Whether to truncate the data. Defaults to False.
            lro_kwargs (dict, optional): Keyword arguments for LongRecordingOrganizer. Defaults to {}.
        """

        self.base_folder_path = Path(base_folder_path)
        self.anim_id = anim_id
        self.animal_param = [anim_id]
        self.day_sep = day_sep
        self.read_mode = mode
        self.assume_from_number = assume_from_number

        match mode:
            case "nest":
                self.bin_folder_pattern = self.base_folder_path / f"*{self.anim_id}*" / "*"
            case "concat" | "noday":
                self.bin_folder_pattern = self.base_folder_path / f"*{self.anim_id}*"
                # self.bin_folder_pat = self.base_folder_path / f"*{self.anim_id}*{self.date_format}*"
            case "base":
                self.bin_folder_pattern = self.base_folder_path
            # case 'noday':
            #     self.bin_folder_pat = self.base_folder_path / f"*{self.anim_id}*"
            case _:
                raise ValueError(f"Invalid mode: {mode}")

        self._bin_folders = glob.glob(str(self.bin_folder_pattern))

        # Filter to only include directories (LongRecordingOrganizer expects folder paths)
        before_filter_count = len(self._bin_folders)
        self._bin_folders = [x for x in self._bin_folders if Path(x).is_dir()]
        after_filter_count = len(self._bin_folders)

        if before_filter_count > after_filter_count:
            filtered_count = before_filter_count - after_filter_count
            logging.info(f"Filtered out {filtered_count} non-directory items (files) from glob results")

        # if mode != 'noday':
        #     self.__bin_folders = [x for x in self.__bin_folders if datetime.strptime(Path(x).name, self.date_format)]
        truncate = core.utils.parse_truncate(truncate)
        if truncate:
            warnings.warn(f"AnimalOrganizer will be truncated to the first {truncate} LongRecordings")
            self._bin_folders = self._bin_folders[:truncate]
        self._bin_folders = [x for x in self._bin_folders if not any(y in x for y in skip_days)]
        self.bin_folder_names = [Path(x).name for x in self._bin_folders]
        logging.info(f"bin_folder_pattern: {self.bin_folder_pattern}")
        logging.info(f"self._bin_folders: {self._bin_folders}")
        logging.info(f"self.bin_folder_names: {self.bin_folder_names}")

        if mode == "noday" and len(self._bin_folders) > 1:
            raise ValueError(f"Animal ID '{self.anim_id}' is not unique, found: {', '.join(self._bin_folders)}")
        elif len(self._bin_folders) == 0:
            raise ValueError(f"No directories found for animal ID {self.anim_id} (pattern: {self.bin_folder_pattern})")

        self._animalday_dicts = [
            core.parse_path_to_animalday(e, animal_param=self.animal_param, day_sep=self.day_sep, mode=self.read_mode)
            for e in self._bin_folders
        ]

        # Group folders by parsed animalday to handle overlapping days
        animalday_to_folders = {}
        for folder, animalday_dict in zip(self._bin_folders, self._animalday_dicts):
            animalday = animalday_dict["animalday"]
            if animalday not in animalday_to_folders:
                animalday_to_folders[animalday] = []
            animalday_to_folders[animalday].append(folder)

        # Store grouping info
        self._animalday_folder_groups = animalday_to_folders
        self.unique_animaldays = list(animalday_to_folders.keys())

        # Log merging operations for overlapping days
        overlapping_days = 0
        for animalday, folders in animalday_to_folders.items():
            if len(folders) > 1:
                overlapping_days += 1
                logging.info(f"Merging {len(folders)} folders for {animalday}: {[Path(f).name for f in folders]}")

        if overlapping_days > 0:
            logging.info(f"Found {overlapping_days} animaldays with overlapping folders")

        # Update animaldays to reflect unique days (not total folders)
        self.animaldays = self.unique_animaldays
        logging.info(f"self.animaldays (unique): {self.animaldays}")

        genotypes = [x["genotype"] for x in self._animalday_dicts]
        if len(set(genotypes)) > 1:
            warnings.warn(f"Inconsistent genotypes in {genotypes}")
        self.genotype = genotypes[0]
        logging.info(f"self.genotype: {self.genotype}")

        self.long_analyzers: list[core.LongRecordingAnalyzer] = []
        logging.debug(f"Creating {len(self.unique_animaldays)} LongRecordings (one per unique animalday)")

        # Process manual_datetimes if provided in lro_kwargs
        if "manual_datetimes" in lro_kwargs:
            logging.info("Processing manual_datetimes configuration")
            base_lro_kwargs = lro_kwargs.copy()
            base_lro_kwargs["manual_datetimes"] = datetime(2000, 1, 1, 0, 0, 0)

            self._processed_timestamps = self._process_all_timestamps(
                lro_kwargs["manual_datetimes"], self._animalday_folder_groups, base_lro_kwargs
            )
            # Remove from lro_kwargs since we'll handle it manually
            lro_kwargs = base_lro_kwargs
        else:
            self._processed_timestamps = None

        # Create LongRecordingOrganizer instances
        self._create_long_recordings(lro_kwargs)

    def _resolve_timestamp_input(self, input_spec, folder_path: Path):
        """
        Recursively resolve any timestamp input type to concrete datetime(s).

        Args:
            input_spec: datetime, List[datetime], or Callable returning either
            folder_path: Path to folder for function execution context

        Returns:
            Union[datetime, List[datetime]]: Resolved timestamp(s)

        Raises:
            TypeError: If input_spec is not a supported type
            Exception: If user function fails (wrapped with context)
        """
        if isinstance(input_spec, datetime):
            return input_spec

        elif isinstance(input_spec, list):
            # Validate that all items are datetime objects
            if not all(isinstance(dt, datetime) for dt in input_spec):
                raise TypeError(
                    f"All items in timestamp list must be datetime objects, got: {[type(dt) for dt in input_spec]}"
                )
            return input_spec

        elif callable(input_spec):
            try:
                logging.debug(f"Executing user timestamp function on folder: {folder_path}")
                result = input_spec(folder_path)
                # Recursively process the result (functions can return datetime or list)
                return self._resolve_timestamp_input(result, folder_path)
            except Exception as e:
                logging.error(f"User timestamp function failed on folder '{folder_path}': {e}")
                raise Exception(f"User timestamp function failed on folder '{folder_path}': {e}") from e

        else:
            raise TypeError(
                f"Invalid timestamp input type: {type(input_spec)}. Expected: datetime, List[datetime], or Callable"
            )

    def _find_folder_by_name(self, folder_name: str, animalday_to_folders: dict) -> Path:
        """Find folder path by name in the animalday groups."""
        for animalday, folders in animalday_to_folders.items():
            for folder in folders:
                if Path(folder).name == folder_name:
                    return Path(folder)

        available_names = []
        for folders in animalday_to_folders.values():
            available_names.extend([Path(f).name for f in folders])

        raise ValueError(f"Folder name '{folder_name}' not found. Available folders: {available_names}")

    def _compute_global_timeline(
        self, base_datetime: datetime, animalday_to_folders: dict, base_lro_kwargs: dict
    ) -> dict:
        """
        Compute contiguous timeline for all folders starting from base_datetime.

        This uses a two-pass approach:
        1. Create temporary LROs to determine durations
        2. Compute continuous start times based on cumulative durations
        3. Return timeline mapping for final LRO creation

        Args:
            base_datetime: Starting datetime for the timeline
            animalday_to_folders: Mapping of animalday -> list of folder paths
            base_lro_kwargs: Base kwargs for LRO construction (without manual_datetimes)

        Returns:
            dict: Mapping of folder_name -> start_datetime for continuous timeline
        """
        total_folders = sum(len(folders) for folders in animalday_to_folders.values())
        total_animaldays = len(animalday_to_folders)

        logging.info(
            f"Computing continuous timeline for {total_animaldays} animaldays ({total_folders} total folders) "
            f"starting at {base_datetime}"
        )

        # Step 1: Create temporary LROs to determine durations
        # We need to create LROs in the order they will appear in the final timeline
        ordered_folders = []
        for animalday in sorted(animalday_to_folders.keys()):
            folders = animalday_to_folders[animalday]
            if len(folders) > 1:
                # For overlapping folders, we need to sort them by temporal order
                # Create temp LROs to get timing info for sorting
                folder_lro_pairs = []
                for folder in folders:
                    try:
                        temp_lro = core.LongRecordingOrganizer(folder, **base_lro_kwargs)
                        folder_lro_pairs.append((folder, temp_lro))
                    except Exception as e:
                        logging.warning(f"Failed to create temp LRO for duration estimation in {folder}: {e}")
                        # Use folder order as fallback
                        folder_lro_pairs.append((folder, None))

                # Sort by median time if possible
                sorted_pairs = self._sort_lros_by_median_time(folder_lro_pairs)
                ordered_folders.extend([folder for folder, _ in sorted_pairs])
            else:
                ordered_folders.extend(folders)

        # Step 2: Estimate total duration for each folder
        folder_durations = {}

        for folder in ordered_folders:
            # Create temporary LRO to get duration
            temp_lro = core.LongRecordingOrganizer(folder, **base_lro_kwargs)
            duration = (
                temp_lro.LongRecording.get_duration()
                if hasattr(temp_lro, "LongRecording") and temp_lro.LongRecording
                else 0.0
            )
            folder_durations[folder] = duration
            logging.debug(f"Folder {Path(folder).name}: estimated duration = {duration:.1f}s")

        # Step 3: Compute continuous start times
        result = {}
        current_start_time = base_datetime

        for folder in ordered_folders:
            folder_name = Path(folder).name
            result[folder_name] = current_start_time

            # Move to next start time (current start + duration)
            duration = folder_durations[folder]
            current_start_time = current_start_time + timedelta(seconds=duration)

            logging.debug(f"Timeline: {folder_name} starts at {result[folder_name]}, duration {duration:.1f}s")

        total_timeline_duration = sum(folder_durations.values())
        logging.info(
            f"Continuous timeline computed: {len(result)} folders, total duration {total_timeline_duration:.1f}s"
        )

        return result

    def _process_all_timestamps(self, manual_datetimes, animalday_to_folders: dict, base_lro_kwargs: dict) -> dict:
        """
        Process the top-level manual_datetimes input and return folder_name -> resolved_timestamps mapping.

        Args:
            manual_datetimes: Any supported timestamp input type
            animalday_to_folders: Mapping of animalday -> list of folder paths
            base_lro_kwargs: Base kwargs for LRO construction (without manual_datetimes)

        Returns:
            dict: Mapping of folder_name -> Union[datetime, List[datetime]]
        """
        if isinstance(manual_datetimes, dict):
            # Per-folder specification
            logging.info("Processing per-folder timestamp specification")
            resolved = {}
            for folder_name, folder_spec in manual_datetimes.items():
                folder_path = self._find_folder_by_name(folder_name, animalday_to_folders)
                resolved[folder_name] = self._resolve_timestamp_input(folder_spec, folder_path)
                logging.debug(f"Resolved timestamps for {folder_name}: {resolved[folder_name]}")
            return resolved

        elif isinstance(manual_datetimes, datetime):
            # Global timeline - compute contiguous spacing
            logging.info(f"Processing global timeline starting at {manual_datetimes}")
            return self._compute_global_timeline(manual_datetimes, animalday_to_folders, base_lro_kwargs)

        else:
            # Function or list at top level - apply to all folders
            logging.info("Processing timestamp input for all folders")
            resolved = {}
            for animalday, folders in animalday_to_folders.items():
                for folder in folders:
                    folder_name = Path(folder).name
                    resolved[folder_name] = self._resolve_timestamp_input(manual_datetimes, Path(folder))
                    logging.debug(f"Resolved timestamps for {folder_name}: {resolved[folder_name]}")
            return resolved

    def _get_lro_kwargs_for_folder(self, folder_path: str, base_lro_kwargs: dict) -> dict:
        """
        Get the appropriate lro_kwargs for a specific folder, including processed timestamps if available.

        Args:
            folder_path: Path to the folder
            base_lro_kwargs: Base kwargs to extend

        Returns:
            dict: lro_kwargs with manual_datetimes added if available
        """
        if self._processed_timestamps is None:
            return base_lro_kwargs

        folder_name = Path(folder_path).name
        if folder_name in self._processed_timestamps:
            # Add the processed timestamps for this folder
            kwargs = base_lro_kwargs.copy()
            kwargs["manual_datetimes"] = self._processed_timestamps[folder_name]
            logging.debug(f"Using processed timestamps for folder {folder_name}: {kwargs['manual_datetimes']}")
            return kwargs
        else:
            # No processed timestamps for this folder - use base kwargs
            logging.debug(f"No processed timestamps for folder {folder_name}, using base kwargs")
            return base_lro_kwargs

    def _log_timeline_summary(self):
        """Log timeline summary for debugging purposes."""

        lines = ["AnimalOrganizer Timeline Summary:"]

        if not self.long_recordings:
            lines.append("No LongRecordings created")
        else:
            for i, lro in enumerate(self.long_recordings):
                try:
                    start_time = self._get_lro_start_time(lro)
                    end_time = self._get_lro_end_time(lro)
                    duration = (
                        lro.LongRecording.get_duration() if hasattr(lro, "LongRecording") and lro.LongRecording else 0
                    )
                    n_files = len(lro.file_durations) if hasattr(lro, "file_durations") and lro.file_durations else 1
                    folder_path = getattr(lro, "base_folder_path", "unknown")

                    lines.append(
                        f"LRO {i}: {start_time} → {end_time} "
                        f"(duration: {duration:.1f}s, files: {n_files}, folder: {Path(folder_path).name})"
                    )
                except Exception as e:
                    lines.append(f"Failed to get timeline info for LRO {i}: {e}")

        logging.info("\n".join(lines))

    def _get_lro_start_time(self, lro):
        """Get the start time of an LRO."""
        if hasattr(lro, "file_end_datetimes") and lro.file_end_datetimes:
            if hasattr(lro, "file_durations") and lro.file_durations:
                # Calculate start time from first end time and duration
                first_end = next(dt for dt in lro.file_end_datetimes if dt is not None)
                first_duration = lro.file_durations[0]
                return first_end - timedelta(seconds=first_duration)
        return "unknown"

    def _get_lro_end_time(self, lro):
        """Get the end time of an LRO."""
        if hasattr(lro, "file_end_datetimes") and lro.file_end_datetimes:
            # Get the last non-None end time
            end_times = [dt for dt in lro.file_end_datetimes if dt is not None]
            if end_times:
                return max(end_times)
        return "unknown"

    def get_timeline_summary(self) -> pd.DataFrame:
        """
        Get timeline summary as a DataFrame for user inspection and debugging.

        Returns:
            pd.DataFrame: Timeline information with columns:
                - lro_index: Index of the LRO
                - start_time: Start datetime of the LRO
                - end_time: End datetime of the LRO
                - duration_s: Duration in seconds
                - n_files: Number of files in the LRO
                - folder_path: Base folder path
                - animalday: Parsed animalday identifier
        """
        if not self.long_recordings:
            return pd.DataFrame()

        timeline_data = []
        for i, lro in enumerate(self.long_recordings):
            try:
                start_time = self._get_lro_start_time(lro)
                end_time = self._get_lro_end_time(lro)
                duration = (
                    lro.LongRecording.get_duration() if hasattr(lro, "LongRecording") and lro.LongRecording else 0
                )
                n_files = len(lro.file_durations) if hasattr(lro, "file_durations") and lro.file_durations else 1
                folder_path = getattr(lro, "base_folder_path", "unknown")

                timeline_data.append(
                    {
                        "lro_index": i,
                        "start_time": start_time,
                        "end_time": end_time,
                        "duration_s": duration,
                        "n_files": n_files,
                        "folder_path": str(folder_path),
                        "folder_name": Path(folder_path).name if folder_path != "unknown" else "unknown",
                        "animalday": getattr(
                            lro, "_animalday", "unknown"
                        ),  # This might not exist, but useful if it does
                    }
                )
            except Exception as e:
                # Include failed LROs in the summary for debugging
                timeline_data.append(
                    {
                        "lro_index": i,
                        "start_time": "error",
                        "end_time": "error",
                        "duration_s": 0,
                        "n_files": 0,
                        "folder_path": "error",
                        "folder_name": "error",
                        "animalday": "error",
                        "error": str(e),
                    }
                )

        return pd.DataFrame(timeline_data)

    def _create_long_recordings(self, lro_kwargs: dict):
        """Create LongRecordingOrganizer instances for each unique animalday."""
        # Create one LRO per unique animalday (not per folder)
        self.long_recordings: list[core.LongRecordingOrganizer] = []
        for animalday, folders in self._animalday_folder_groups.items():
            if len(folders) == 1:
                # Single folder - use processed timestamps if available
                folder_kwargs = self._get_lro_kwargs_for_folder(folders[0], lro_kwargs)
                lro = core.LongRecordingOrganizer(folders[0], **folder_kwargs)
            else:
                # Multiple folders - create individual LROs then sort and merge
                logging.info(f"Creating individual LROs for {len(folders)} folders for {animalday}")

                # Create individual LROs first, each with their own processed timestamps
                folder_lro_pairs = []
                for folder in folders:
                    folder_kwargs = self._get_lro_kwargs_for_folder(folder, lro_kwargs)
                    individual_lro = core.LongRecordingOrganizer(folder, **folder_kwargs)
                    folder_lro_pairs.append((folder, individual_lro))

                # Sort by median time using constructed LROs
                sorted_folder_lro_pairs = self._sort_lros_by_median_time(folder_lro_pairs)

                # Debug logging to show the order of LROs being merged
                logging.info("LRO merge order for overlapping animalday:")
                for i, (folder, lro) in enumerate(sorted_folder_lro_pairs):
                    folder_name = Path(folder).name
                    # Handle mock objects gracefully
                    try:
                        duration = (
                            lro.LongRecording.get_duration()
                            if hasattr(lro, "LongRecording") and lro.LongRecording
                            else 0
                        )
                        duration_str = f"{float(duration):.1f}s"
                    except (TypeError, ValueError):
                        duration_str = "mock"
                    logging.info(f"  {i + 1}. {folder_name} (duration: {duration_str})")

                # Merge all LROs into the first one (in temporal order)
                merged_lro = sorted_folder_lro_pairs[0][1]  # Get the LRO from first tuple
                logging.info(f"Base LRO: {Path(sorted_folder_lro_pairs[0][0]).name}")

                for i, (folder, lro) in enumerate(sorted_folder_lro_pairs[1:], 1):
                    folder_name = Path(folder).name
                    logging.info(f"Merging LRO {i}: {folder_name} into base LRO")
                    merged_lro.merge(lro)

                lro = merged_lro
                logging.info(f"Successfully merged {len(sorted_folder_lro_pairs)} LROs for {animalday}")

            self.long_recordings.append(lro)

        # Log timeline summary for debugging
        self._log_timeline_summary()

        channel_names = [x.channel_names for x in self.long_recordings]
        if len(set([" ".join(x) for x in channel_names])) > 1:
            warnings.warn(f"Inconsistent channel names in long_recordings: {channel_names}")
        self.channel_names = channel_names[0]
        self.bad_channels_dict = {}

        animal_ids = [x["animal"] for x in self._animalday_dicts]
        if len(set(animal_ids)) > 1:
            warnings.warn(f"Inconsistent animal IDs in {animal_ids}")
        self.animal_id = animal_ids[0]

        self.features_df: pd.DataFrame = pd.DataFrame()
        self.features_avg_df: pd.DataFrame = pd.DataFrame()

    def _sort_lros_by_median_time(self, folder_lro_pairs):
        """Sort LROs by median timestamp of their constituent recordings.

        Args:
            folder_lro_pairs (list): List of (folder_path, lro) tuples

        Returns:
            list: Sorted (folder_path, lro) tuples in temporal order based on median timestamp

        Note:
            Extracts file_end_datetimes from each LRO (timestamps from LastEdit fields in metadata CSV files),
            calculates the median timestamp of constituent recordings within each LRO, and sorts LROs
            by this median timestamp. This ensures proper temporal ordering based on actual recording
            content rather than folder naming conventions. Falls back to folder modification time if
            no valid timestamps are available.
        """
        if len(folder_lro_pairs) <= 1:
            return folder_lro_pairs

        folder_lro_times = []

        for folder_path, lro in folder_lro_pairs:
            try:
                # Get median timestamp from constituent recordings within the LRO
                if hasattr(lro, "file_end_datetimes") and lro.file_end_datetimes:
                    try:
                        valid_timestamps = [ts for ts in lro.file_end_datetimes if ts is not None]
                    except TypeError:
                        valid_timestamps = []

                    if valid_timestamps:
                        # Sort timestamps and get the median
                        valid_timestamps.sort()
                        n_timestamps = len(valid_timestamps)

                        if n_timestamps % 2 == 1:
                            # Odd number of timestamps - take middle one
                            median_timestamp = valid_timestamps[n_timestamps // 2]
                        else:
                            # Even number of timestamps - take average of two middle ones
                            mid1 = valid_timestamps[n_timestamps // 2 - 1]
                            mid2 = valid_timestamps[n_timestamps // 2]
                            median_timestamp = mid1 + (mid2 - mid1) / 2

                        # Convert to seconds since epoch for sorting
                        median_time_seconds = median_timestamp.timestamp()
                        logging.debug(
                            f"LRO {Path(folder_path).name}: {n_timestamps} recordings, median timestamp: {median_timestamp}"
                        )
                    else:
                        raise ValueError(f"No file_end_datetimes available in LRO {Path(folder_path).name}, cannot determine temporal order")
                else:
                    raise ValueError(f"No file_end_datetimes available in LRO {Path(folder_path).name}, cannot determine temporal order")

                folder_lro_times.append((folder_path, lro, median_time_seconds))

            except Exception as e:
                logging.warning(f"Could not extract timing from {folder_path}: {e}")
                raise

        # Sort by median time
        sorted_folder_lro_times = sorted(folder_lro_times, key=lambda x: x[2])
        sorted_folder_lro_pairs = [(folder, lro) for folder, lro, _ in sorted_folder_lro_times]

        # Log the sorting for debugging
        if len(folder_lro_pairs) > 1:
            logging.info("LRO temporal sorting details:")
            for i, (folder, lro, median_time_seconds) in enumerate(sorted_folder_lro_times):
                folder_name = Path(folder).name

                # Convert back to datetime for readable logging
                try:
                    from datetime import datetime

                    median_datetime = datetime.fromtimestamp(median_time_seconds)
                    median_time_str = median_datetime.strftime("%Y-%m-%d %H:%M:%S")
                except (TypeError, ValueError, OSError):
                    median_time_str = f"{median_time_seconds:.1f}s"

                # Handle mock objects gracefully for duration
                try:
                    duration = (
                        lro.LongRecording.get_duration() if hasattr(lro, "LongRecording") and lro.LongRecording else 0
                    )
                    duration_str = f"{float(duration):.1f}s"
                except (TypeError, ValueError):
                    duration_str = "mock"

                # Show number of recordings in LRO
                try:
                    n_recordings = (
                        len(lro.file_end_datetimes)
                        if hasattr(lro, "file_end_datetimes") and lro.file_end_datetimes
                        else 0
                    )
                except (TypeError, AttributeError):
                    n_recordings = "unknown"

                logging.info(
                    f"  {i + 1}. {folder_name}: median_timestamp={median_time_str}, {n_recordings} recordings, duration={duration_str}"
                )

            # Summary line for quick reference
            folder_names = [Path(f).name for f, _, _ in sorted_folder_lro_times]
            median_times = []
            for _, _, median_time_seconds in sorted_folder_lro_times:
                median_datetime = datetime.fromtimestamp(median_time_seconds)
                median_times.append(median_datetime.strftime("%H:%M:%S"))

            logging.info(f"Final sort order: {list(zip(folder_names, median_times))}")

        return sorted_folder_lro_pairs

    def convert_colbins_to_rowbins(self, overwrite=False, multiprocess_mode: Literal["dask", "serial"] = "serial"):
        for lrec in tqdm(self.long_recordings, desc="Converting column bins to row bins"):
            lrec.convert_colbins_to_rowbins(overwrite=overwrite, multiprocess_mode=multiprocess_mode)

    def convert_rowbins_to_rec(self, multiprocess_mode: Literal["dask", "serial"] = "serial"):
        for lrec in tqdm(self.long_recordings, desc="Converting row bins to recs"):
            lrec.convert_rowbins_to_rec(multiprocess_mode=multiprocess_mode)

    def cleanup_rec(self):
        for lrec in self.long_recordings:
            lrec.cleanup_rec()

    def compute_bad_channels(self, lof_threshold: float = None, force_recompute: bool = False):
        """Compute bad channels using LOF analysis for all recordings.

        Args:
            lof_threshold (float, optional): Threshold for determining bad channels from LOF scores.
                                           If None, only computes/loads scores without setting bad_channel_names.
            force_recompute (bool): Whether to recompute LOF scores even if they exist.
        """
        logging.info(
            f"Computing bad channels for {len(self.long_recordings)} recordings with threshold={lof_threshold}"
        )
        for i, lrec in enumerate(self.long_recordings):
            logging.debug(f"Computing bad channels for recording {i}: {self.animaldays[i]}")
            lrec.compute_bad_channels(lof_threshold=lof_threshold, force_recompute=force_recompute)
            logging.debug(
                f"Recording {i} LOF scores computed: {hasattr(lrec, 'lof_scores') and lrec.lof_scores is not None}"
            )

        # Update bad channels dict if threshold was applied
        if lof_threshold is not None:
            self.bad_channels_dict = {
                animalday: lrec.bad_channel_names for animalday, lrec in zip(self.animaldays, self.long_recordings)
            }

    def apply_lof_threshold(self, lof_threshold: float):
        """Apply threshold to existing LOF scores to determine bad channels for all recordings.

        Args:
            lof_threshold (float): Threshold for determining bad channels.
        """
        for lrec in self.long_recordings:
            lrec.apply_lof_threshold(lof_threshold)

        self.bad_channels_dict = {
            animalday: lrec.bad_channel_names for animalday, lrec in zip(self.animaldays, self.long_recordings)
        }

    def get_all_lof_scores(self) -> dict:
        """Get LOF scores for all recordings.

        Returns:
            dict: Dictionary mapping animal days to LOF score dictionaries.
        """
        return {animalday: lrec.get_lof_scores() for animalday, lrec in zip(self.animaldays, self.long_recordings)}

    def compute_windowed_analysis(
        self,
        features: list[str],
        exclude: list[str] = [],
        window_s=4,
        multiprocess_mode: Literal["dask", "serial"] = "serial",
        suppress_short_interval_error=False,
        apply_notch_filter=True,
        **kwargs,
    ):
        """Computes windowed analysis of animal recordings. The data is divided into windows (time bins), then features are extracted from each window. The result is
        formatted to a Dataframe and wrapped into a WindowAnalysisResult object.

        Args:
            features (list[str]): List of features to compute. See individual compute_...() functions for output format
            exclude (list[str], optional): List of features to ignore. Will override the features parameter. Defaults to [].
            window_s (int, optional): Length of each window in seconds. Note that some features break with very short window times. Defaults to 4.
            suppress_short_interval_error (bool, optional): If True, suppress ValueError for short intervals between timestamps in resulting WindowAnalysisResult. Useful for aggregated WARs. Defaults to False.
            apply_notch_filter (bool, optional): Whether to apply notch filtering to remove line noise. Uses constants.LINE_FREQ. Defaults to True.

        Raises:
            AttributeError: If a feature's compute_...() function was not implemented, this error will be raised.

        Returns:
            window_analysis_result: a WindowAnalysisResult object
        """
        features = _sanitize_feature_request(features, exclude)

        dataframes = []
        for lrec in self.long_recordings:  # Iterate over all long recordings
            logging.info(f"Computing windowed analysis for {lrec.base_folder_path}")
            lan = core.LongRecordingAnalyzer(lrec, fragment_len_s=window_s, apply_notch_filter=apply_notch_filter)
            if lan.n_fragments == 0:
                logging.warning(f"No fragments found for {lrec.base_folder_path}. Skipping.")
                continue

            logging.debug(f"Processing {lan.n_fragments} fragments")
            miniters = int(lan.n_fragments / 100)
            match multiprocess_mode:
                case "dask":
                    # The last fragment is not included because it makes the dask array ragged
                    logging.debug("Converting LongRecording to numpy array")

                    n_fragments_war = max(lan.n_fragments - 1, 1)
                    first_fragment = lan.get_fragment_np(0)
                    np_fragments = np.empty((n_fragments_war,) + first_fragment.shape, dtype=first_fragment.dtype)
                    logging.debug(f"np_fragments.shape: {np_fragments.shape}")
                    for idx in range(n_fragments_war):
                        np_fragments[idx] = lan.get_fragment_np(idx)

                    # Cache fragments to zarr
                    tmppath, _ = core.utils.cache_fragments_to_zarr(np_fragments, n_fragments_war)
                    del np_fragments

                    logging.debug("Processing metadata serially")
                    metadatas = [self._process_fragment_metadata(idx, lan, window_s) for idx in range(n_fragments_war)]
                    meta_df = pd.DataFrame(metadatas)

                    logging.debug("Processing features in parallel")
                    np_fragments_reconstruct = da.from_zarr(tmppath, chunks=("auto", -1, -1))
                    logging.debug(f"Dask array shape: {np_fragments_reconstruct.shape}")
                    logging.debug(f"Dask array chunks: {np_fragments_reconstruct.chunks}")

                    # Create delayed tasks for each fragment using efficient dependency resolution
                    feature_values = [
                        delayed(FragmentAnalyzer.process_fragment_with_dependencies)(
                            np_fragments_reconstruct[idx], lan.f_s, features, kwargs
                        )
                        for idx in range(n_fragments_war)
                    ]

                    # Compute features in parallel
                    feature_values = dask.compute(*feature_values)

                    # Clean up temp directory after processing
                    logging.debug("Cleaning up temp directory")
                    try:
                        import shutil

                        shutil.rmtree(tmppath)
                    except (OSError, FileNotFoundError) as e:
                        logging.warning(f"Failed to remove temporary directory {tmppath}: {e}")

                    logging.debug("Combining metadata and feature values")
                    feat_df = pd.DataFrame(feature_values)
                    lan_df = pd.concat([meta_df, feat_df], axis=1)

                case _:
                    logging.debug("Processing serially")
                    lan_df = []
                    for idx in tqdm(range(lan.n_fragments), desc="Processing rows", miniters=miniters):
                        lan_df.append(self._process_fragment_serial(idx, features, lan, window_s, kwargs))

            lan_df = pd.DataFrame(lan_df)

            logging.debug("Validating timestamps")
            core.validate_timestamps(lan_df["timestamp"].tolist())
            lan_df = lan_df.sort_values("timestamp").reset_index(drop=True)

            self.long_analyzers.append(lan)
            dataframes.append(lan_df)

        self.features_df = pd.concat(dataframes)
        self.features_df = self.features_df

        # Collect LOF scores from long recordings
        lof_scores_dict = {}
        for animalday, lrec in zip(self.animaldays, self.long_recordings):
            logging.debug(
                f"Checking LOF scores for {animalday}: has_attr={hasattr(lrec, 'lof_scores')}, "
                f"is_not_none={getattr(lrec, 'lof_scores', None) is not None}"
            )
            if hasattr(lrec, "lof_scores") and lrec.lof_scores is not None:
                lof_scores_dict[animalday] = {
                    "lof_scores": lrec.lof_scores.tolist(),
                    "channel_names": lrec.channel_names,
                }
                logging.info(f"Added LOF scores for {animalday}: {len(lrec.lof_scores)} channels")

        logging.info(f"Total LOF scores collected: {len(lof_scores_dict)} animal days")

        self.window_analysis_result = WindowAnalysisResult(
            self.features_df,
            self.animal_id,
            self.genotype,
            self.channel_names,
            self.assume_from_number,
            self.bad_channels_dict,
            suppress_short_interval_error,
            lof_scores_dict,
        )

        return self.window_analysis_result

    def compute_spike_analysis(self, multiprocess_mode: Literal["dask", "serial"] = "serial"):
        """Compute spike sorting on all long recordings and return a list of SpikeAnalysisResult objects

        Args:
            multiprocess_mode (Literal['dask', 'serial']): Whether to use Dask for parallel processing. Defaults to 'serial'.

        Returns:
            spike_analysis_results: list[SpikeAnalysisResult]. Each SpikeAnalysisResult object corresponds to a LongRecording object,
            typically a different day or recording session.

        Raises:
            ImportError: If mountainsort5 is not available.
        """
        # Check if mountainsort5 is available
        if not MOUNTAINSORT_AVAILABLE:
            raise ImportError("Spike analysis requires mountainsort5. Install it with: pip install mountainsort5")
        sars = []
        lrec_sorts = []
        lrec_recs = []
        recs = [lrec.LongRecording for lrec in self.long_recordings]
        logging.info(f"Sorting {len(recs)} recordings")
        for rec in recs:
            if rec.get_total_samples() == 0:
                logging.warning(f"Skipping {rec.__str__()} because it has no samples")
                sortings, recordings = [], []
            else:
                sortings, recordings = core.MountainSortAnalyzer.sort_recording(
                    rec, multiprocess_mode=multiprocess_mode
                )
            lrec_sorts.append(sortings)
            lrec_recs.append(recordings)

        if multiprocess_mode == "dask":
            lrec_sorts = dask.compute(*lrec_sorts)

        lrec_sas = [
            [
                si.create_sorting_analyzer(sorting, recording, sparse=False)
                for sorting, recording in zip(sortings, recordings)
            ]
            for sortings, recordings in zip(lrec_sorts, lrec_recs)
        ]
        sars = [
            SpikeAnalysisResult(
                result_sas=sas,
                result_mne=None,
                animal_id=self.animal_id,
                genotype=self.genotype,
                animal_day=self.animaldays[i],
                bin_folder_name=self.bin_folder_names[i],
                metadata=self.long_recordings[i].meta,
                channel_names=self.channel_names,
                assume_from_number=self.assume_from_number,
            )
            for i, sas in enumerate(lrec_sas)
        ]

        self.spike_analysis_results = sars
        return self.spike_analysis_results

    def _process_fragment_serial(self, idx, features, lan: core.LongRecordingAnalyzer, window_s, kwargs: dict):
        row = self._process_fragment_metadata(idx, lan, window_s)
        row.update(self._process_fragment_features(idx, features, lan, kwargs))
        return row

    def _process_fragment_metadata(self, idx, lan: core.LongRecordingAnalyzer, window_s):
        row = {}

        lan_folder = lan.LongRecording.base_folder_path
        animalday_dict = core.parse_path_to_animalday(
            lan_folder, animal_param=self.animal_param, day_sep=self.day_sep, mode=self.read_mode
        )
        row["animalday"] = animalday_dict["animalday"]
        row["animal"] = animalday_dict["animal"]
        row["day"] = animalday_dict["day"]
        row["genotype"] = animalday_dict["genotype"]
        row["duration"] = lan.LongRecording.get_dur_fragment(window_s, idx)
        row["endfile"] = lan.get_file_end(idx)

        frag_dt = lan.LongRecording.get_datetime_fragment(window_s, idx)
        row["timestamp"] = frag_dt
        row["isday"] = core.utils.is_day(frag_dt)

        return row

    def _process_fragment_features(self, idx, features, lan: core.LongRecordingAnalyzer, kwargs: dict):
        row = {}
        for feat in features:
            func = getattr(lan, f"compute_{feat}")
            if callable(func):
                row[feat] = func(idx, **kwargs)
            else:
                raise AttributeError(f"Invalid function {func}")
        return row

__init__(base_folder_path, anim_id, day_sep=None, mode='concat', assume_from_number=False, skip_days=[], truncate=False, lro_kwargs={})

AnimalOrganizer is used to organize data from a single animal into a format that can be used for analysis. It is used to organize data from a single animal into a format that can be used for analysis.

Parameters:

Name Type Description Default
base_folder_path str

The path to the base folder of the animal data.

required
anim_id str

The ID of the animal. This should correspond to only one animal.

required
day_sep str

Separator for day in folder name. Set to None or empty string to get all folders. Defaults to None.

None
mode Literal['nest', 'concat', 'base', 'noday']

The mode of the AnimalOrganizer. Defaults to "concat". File structure patterns (where * indicates search location): "nest": base_folder_path / animal_id / date_format (looks for folders/files within animal_id subdirectories) "concat": base_folder_path / animal_iddate_format (looks for folders/files with animal_id+date in name at base level) "base": base_folder_path / * (looks for folders/files directly in base_folder_path) "noday": base_folder_path / animal_id* (same as concat but expects single unique match, no date filtering)

'concat'
assume_from_number bool

Whether to assume the animal ID is a number. Defaults to False.

False
skip_days list[str]

The days to skip. Defaults to [].

[]
truncate bool | int

Whether to truncate the data. Defaults to False.

False
lro_kwargs dict

Keyword arguments for LongRecordingOrganizer. Defaults to {}.

{}
Source code in pythoneeg/visualization/results.py
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
def __init__(
    self,
    base_folder_path,
    anim_id: str,
    day_sep: str | None = None,
    mode: Literal["nest", "concat", "base", "noday"] = "concat",
    assume_from_number=False,
    skip_days: list[str] = [],
    truncate: bool | int = False,
    lro_kwargs: dict = {},
) -> None:
    """
    AnimalOrganizer is used to organize data from a single animal into a format that can be used for analysis.
    It is used to organize data from a single animal into a format that can be used for analysis.

    Args:
        base_folder_path (str): The path to the base folder of the animal data.
        anim_id (str): The ID of the animal. This should correspond to only one animal.
        day_sep (str, optional): Separator for day in folder name. Set to None or empty string to get all folders. Defaults to None.
        mode (Literal["nest", "concat", "base", "noday"], optional): The mode of the AnimalOrganizer. Defaults to "concat".
            File structure patterns (where * indicates search location):
            "nest": base_folder_path / animal_id / *date_format* (looks for folders/files within animal_id subdirectories)
            "concat": base_folder_path / *animal_id*date_format* (looks for folders/files with animal_id+date in name at base level)
            "base": base_folder_path / * (looks for folders/files directly in base_folder_path)
            "noday": base_folder_path / *animal_id* (same as concat but expects single unique match, no date filtering)
        assume_from_number (bool, optional): Whether to assume the animal ID is a number. Defaults to False.
        skip_days (list[str], optional): The days to skip. Defaults to [].
        truncate (bool|int, optional): Whether to truncate the data. Defaults to False.
        lro_kwargs (dict, optional): Keyword arguments for LongRecordingOrganizer. Defaults to {}.
    """

    self.base_folder_path = Path(base_folder_path)
    self.anim_id = anim_id
    self.animal_param = [anim_id]
    self.day_sep = day_sep
    self.read_mode = mode
    self.assume_from_number = assume_from_number

    match mode:
        case "nest":
            self.bin_folder_pattern = self.base_folder_path / f"*{self.anim_id}*" / "*"
        case "concat" | "noday":
            self.bin_folder_pattern = self.base_folder_path / f"*{self.anim_id}*"
            # self.bin_folder_pat = self.base_folder_path / f"*{self.anim_id}*{self.date_format}*"
        case "base":
            self.bin_folder_pattern = self.base_folder_path
        # case 'noday':
        #     self.bin_folder_pat = self.base_folder_path / f"*{self.anim_id}*"
        case _:
            raise ValueError(f"Invalid mode: {mode}")

    self._bin_folders = glob.glob(str(self.bin_folder_pattern))

    # Filter to only include directories (LongRecordingOrganizer expects folder paths)
    before_filter_count = len(self._bin_folders)
    self._bin_folders = [x for x in self._bin_folders if Path(x).is_dir()]
    after_filter_count = len(self._bin_folders)

    if before_filter_count > after_filter_count:
        filtered_count = before_filter_count - after_filter_count
        logging.info(f"Filtered out {filtered_count} non-directory items (files) from glob results")

    # if mode != 'noday':
    #     self.__bin_folders = [x for x in self.__bin_folders if datetime.strptime(Path(x).name, self.date_format)]
    truncate = core.utils.parse_truncate(truncate)
    if truncate:
        warnings.warn(f"AnimalOrganizer will be truncated to the first {truncate} LongRecordings")
        self._bin_folders = self._bin_folders[:truncate]
    self._bin_folders = [x for x in self._bin_folders if not any(y in x for y in skip_days)]
    self.bin_folder_names = [Path(x).name for x in self._bin_folders]
    logging.info(f"bin_folder_pattern: {self.bin_folder_pattern}")
    logging.info(f"self._bin_folders: {self._bin_folders}")
    logging.info(f"self.bin_folder_names: {self.bin_folder_names}")

    if mode == "noday" and len(self._bin_folders) > 1:
        raise ValueError(f"Animal ID '{self.anim_id}' is not unique, found: {', '.join(self._bin_folders)}")
    elif len(self._bin_folders) == 0:
        raise ValueError(f"No directories found for animal ID {self.anim_id} (pattern: {self.bin_folder_pattern})")

    self._animalday_dicts = [
        core.parse_path_to_animalday(e, animal_param=self.animal_param, day_sep=self.day_sep, mode=self.read_mode)
        for e in self._bin_folders
    ]

    # Group folders by parsed animalday to handle overlapping days
    animalday_to_folders = {}
    for folder, animalday_dict in zip(self._bin_folders, self._animalday_dicts):
        animalday = animalday_dict["animalday"]
        if animalday not in animalday_to_folders:
            animalday_to_folders[animalday] = []
        animalday_to_folders[animalday].append(folder)

    # Store grouping info
    self._animalday_folder_groups = animalday_to_folders
    self.unique_animaldays = list(animalday_to_folders.keys())

    # Log merging operations for overlapping days
    overlapping_days = 0
    for animalday, folders in animalday_to_folders.items():
        if len(folders) > 1:
            overlapping_days += 1
            logging.info(f"Merging {len(folders)} folders for {animalday}: {[Path(f).name for f in folders]}")

    if overlapping_days > 0:
        logging.info(f"Found {overlapping_days} animaldays with overlapping folders")

    # Update animaldays to reflect unique days (not total folders)
    self.animaldays = self.unique_animaldays
    logging.info(f"self.animaldays (unique): {self.animaldays}")

    genotypes = [x["genotype"] for x in self._animalday_dicts]
    if len(set(genotypes)) > 1:
        warnings.warn(f"Inconsistent genotypes in {genotypes}")
    self.genotype = genotypes[0]
    logging.info(f"self.genotype: {self.genotype}")

    self.long_analyzers: list[core.LongRecordingAnalyzer] = []
    logging.debug(f"Creating {len(self.unique_animaldays)} LongRecordings (one per unique animalday)")

    # Process manual_datetimes if provided in lro_kwargs
    if "manual_datetimes" in lro_kwargs:
        logging.info("Processing manual_datetimes configuration")
        base_lro_kwargs = lro_kwargs.copy()
        base_lro_kwargs["manual_datetimes"] = datetime(2000, 1, 1, 0, 0, 0)

        self._processed_timestamps = self._process_all_timestamps(
            lro_kwargs["manual_datetimes"], self._animalday_folder_groups, base_lro_kwargs
        )
        # Remove from lro_kwargs since we'll handle it manually
        lro_kwargs = base_lro_kwargs
    else:
        self._processed_timestamps = None

    # Create LongRecordingOrganizer instances
    self._create_long_recordings(lro_kwargs)

apply_lof_threshold(lof_threshold)

Apply threshold to existing LOF scores to determine bad channels for all recordings.

Parameters:

Name Type Description Default
lof_threshold float

Threshold for determining bad channels.

required
Source code in pythoneeg/visualization/results.py
745
746
747
748
749
750
751
752
753
754
755
756
def apply_lof_threshold(self, lof_threshold: float):
    """Apply threshold to existing LOF scores to determine bad channels for all recordings.

    Args:
        lof_threshold (float): Threshold for determining bad channels.
    """
    for lrec in self.long_recordings:
        lrec.apply_lof_threshold(lof_threshold)

    self.bad_channels_dict = {
        animalday: lrec.bad_channel_names for animalday, lrec in zip(self.animaldays, self.long_recordings)
    }

compute_bad_channels(lof_threshold=None, force_recompute=False)

Compute bad channels using LOF analysis for all recordings.

Parameters:

Name Type Description Default
lof_threshold float

Threshold for determining bad channels from LOF scores. If None, only computes/loads scores without setting bad_channel_names.

None
force_recompute bool

Whether to recompute LOF scores even if they exist.

False
Source code in pythoneeg/visualization/results.py
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
def compute_bad_channels(self, lof_threshold: float = None, force_recompute: bool = False):
    """Compute bad channels using LOF analysis for all recordings.

    Args:
        lof_threshold (float, optional): Threshold for determining bad channels from LOF scores.
                                       If None, only computes/loads scores without setting bad_channel_names.
        force_recompute (bool): Whether to recompute LOF scores even if they exist.
    """
    logging.info(
        f"Computing bad channels for {len(self.long_recordings)} recordings with threshold={lof_threshold}"
    )
    for i, lrec in enumerate(self.long_recordings):
        logging.debug(f"Computing bad channels for recording {i}: {self.animaldays[i]}")
        lrec.compute_bad_channels(lof_threshold=lof_threshold, force_recompute=force_recompute)
        logging.debug(
            f"Recording {i} LOF scores computed: {hasattr(lrec, 'lof_scores') and lrec.lof_scores is not None}"
        )

    # Update bad channels dict if threshold was applied
    if lof_threshold is not None:
        self.bad_channels_dict = {
            animalday: lrec.bad_channel_names for animalday, lrec in zip(self.animaldays, self.long_recordings)
        }

compute_spike_analysis(multiprocess_mode='serial')

Compute spike sorting on all long recordings and return a list of SpikeAnalysisResult objects

Parameters:

Name Type Description Default
multiprocess_mode Literal['dask', 'serial']

Whether to use Dask for parallel processing. Defaults to 'serial'.

'serial'

Returns:

Name Type Description
spike_analysis_results

list[SpikeAnalysisResult]. Each SpikeAnalysisResult object corresponds to a LongRecording object,

typically a different day or recording session.

Raises:

Type Description
ImportError

If mountainsort5 is not available.

Source code in pythoneeg/visualization/results.py
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
def compute_spike_analysis(self, multiprocess_mode: Literal["dask", "serial"] = "serial"):
    """Compute spike sorting on all long recordings and return a list of SpikeAnalysisResult objects

    Args:
        multiprocess_mode (Literal['dask', 'serial']): Whether to use Dask for parallel processing. Defaults to 'serial'.

    Returns:
        spike_analysis_results: list[SpikeAnalysisResult]. Each SpikeAnalysisResult object corresponds to a LongRecording object,
        typically a different day or recording session.

    Raises:
        ImportError: If mountainsort5 is not available.
    """
    # Check if mountainsort5 is available
    if not MOUNTAINSORT_AVAILABLE:
        raise ImportError("Spike analysis requires mountainsort5. Install it with: pip install mountainsort5")
    sars = []
    lrec_sorts = []
    lrec_recs = []
    recs = [lrec.LongRecording for lrec in self.long_recordings]
    logging.info(f"Sorting {len(recs)} recordings")
    for rec in recs:
        if rec.get_total_samples() == 0:
            logging.warning(f"Skipping {rec.__str__()} because it has no samples")
            sortings, recordings = [], []
        else:
            sortings, recordings = core.MountainSortAnalyzer.sort_recording(
                rec, multiprocess_mode=multiprocess_mode
            )
        lrec_sorts.append(sortings)
        lrec_recs.append(recordings)

    if multiprocess_mode == "dask":
        lrec_sorts = dask.compute(*lrec_sorts)

    lrec_sas = [
        [
            si.create_sorting_analyzer(sorting, recording, sparse=False)
            for sorting, recording in zip(sortings, recordings)
        ]
        for sortings, recordings in zip(lrec_sorts, lrec_recs)
    ]
    sars = [
        SpikeAnalysisResult(
            result_sas=sas,
            result_mne=None,
            animal_id=self.animal_id,
            genotype=self.genotype,
            animal_day=self.animaldays[i],
            bin_folder_name=self.bin_folder_names[i],
            metadata=self.long_recordings[i].meta,
            channel_names=self.channel_names,
            assume_from_number=self.assume_from_number,
        )
        for i, sas in enumerate(lrec_sas)
    ]

    self.spike_analysis_results = sars
    return self.spike_analysis_results

compute_windowed_analysis(features, exclude=[], window_s=4, multiprocess_mode='serial', suppress_short_interval_error=False, apply_notch_filter=True, **kwargs)

Computes windowed analysis of animal recordings. The data is divided into windows (time bins), then features are extracted from each window. The result is formatted to a Dataframe and wrapped into a WindowAnalysisResult object.

Parameters:

Name Type Description Default
features list[str]

List of features to compute. See individual compute_...() functions for output format

required
exclude list[str]

List of features to ignore. Will override the features parameter. Defaults to [].

[]
window_s int

Length of each window in seconds. Note that some features break with very short window times. Defaults to 4.

4
suppress_short_interval_error bool

If True, suppress ValueError for short intervals between timestamps in resulting WindowAnalysisResult. Useful for aggregated WARs. Defaults to False.

False
apply_notch_filter bool

Whether to apply notch filtering to remove line noise. Uses constants.LINE_FREQ. Defaults to True.

True

Raises:

Type Description
AttributeError

If a feature's compute_...() function was not implemented, this error will be raised.

Returns:

Name Type Description
window_analysis_result

a WindowAnalysisResult object

Source code in pythoneeg/visualization/results.py
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
def compute_windowed_analysis(
    self,
    features: list[str],
    exclude: list[str] = [],
    window_s=4,
    multiprocess_mode: Literal["dask", "serial"] = "serial",
    suppress_short_interval_error=False,
    apply_notch_filter=True,
    **kwargs,
):
    """Computes windowed analysis of animal recordings. The data is divided into windows (time bins), then features are extracted from each window. The result is
    formatted to a Dataframe and wrapped into a WindowAnalysisResult object.

    Args:
        features (list[str]): List of features to compute. See individual compute_...() functions for output format
        exclude (list[str], optional): List of features to ignore. Will override the features parameter. Defaults to [].
        window_s (int, optional): Length of each window in seconds. Note that some features break with very short window times. Defaults to 4.
        suppress_short_interval_error (bool, optional): If True, suppress ValueError for short intervals between timestamps in resulting WindowAnalysisResult. Useful for aggregated WARs. Defaults to False.
        apply_notch_filter (bool, optional): Whether to apply notch filtering to remove line noise. Uses constants.LINE_FREQ. Defaults to True.

    Raises:
        AttributeError: If a feature's compute_...() function was not implemented, this error will be raised.

    Returns:
        window_analysis_result: a WindowAnalysisResult object
    """
    features = _sanitize_feature_request(features, exclude)

    dataframes = []
    for lrec in self.long_recordings:  # Iterate over all long recordings
        logging.info(f"Computing windowed analysis for {lrec.base_folder_path}")
        lan = core.LongRecordingAnalyzer(lrec, fragment_len_s=window_s, apply_notch_filter=apply_notch_filter)
        if lan.n_fragments == 0:
            logging.warning(f"No fragments found for {lrec.base_folder_path}. Skipping.")
            continue

        logging.debug(f"Processing {lan.n_fragments} fragments")
        miniters = int(lan.n_fragments / 100)
        match multiprocess_mode:
            case "dask":
                # The last fragment is not included because it makes the dask array ragged
                logging.debug("Converting LongRecording to numpy array")

                n_fragments_war = max(lan.n_fragments - 1, 1)
                first_fragment = lan.get_fragment_np(0)
                np_fragments = np.empty((n_fragments_war,) + first_fragment.shape, dtype=first_fragment.dtype)
                logging.debug(f"np_fragments.shape: {np_fragments.shape}")
                for idx in range(n_fragments_war):
                    np_fragments[idx] = lan.get_fragment_np(idx)

                # Cache fragments to zarr
                tmppath, _ = core.utils.cache_fragments_to_zarr(np_fragments, n_fragments_war)
                del np_fragments

                logging.debug("Processing metadata serially")
                metadatas = [self._process_fragment_metadata(idx, lan, window_s) for idx in range(n_fragments_war)]
                meta_df = pd.DataFrame(metadatas)

                logging.debug("Processing features in parallel")
                np_fragments_reconstruct = da.from_zarr(tmppath, chunks=("auto", -1, -1))
                logging.debug(f"Dask array shape: {np_fragments_reconstruct.shape}")
                logging.debug(f"Dask array chunks: {np_fragments_reconstruct.chunks}")

                # Create delayed tasks for each fragment using efficient dependency resolution
                feature_values = [
                    delayed(FragmentAnalyzer.process_fragment_with_dependencies)(
                        np_fragments_reconstruct[idx], lan.f_s, features, kwargs
                    )
                    for idx in range(n_fragments_war)
                ]

                # Compute features in parallel
                feature_values = dask.compute(*feature_values)

                # Clean up temp directory after processing
                logging.debug("Cleaning up temp directory")
                try:
                    import shutil

                    shutil.rmtree(tmppath)
                except (OSError, FileNotFoundError) as e:
                    logging.warning(f"Failed to remove temporary directory {tmppath}: {e}")

                logging.debug("Combining metadata and feature values")
                feat_df = pd.DataFrame(feature_values)
                lan_df = pd.concat([meta_df, feat_df], axis=1)

            case _:
                logging.debug("Processing serially")
                lan_df = []
                for idx in tqdm(range(lan.n_fragments), desc="Processing rows", miniters=miniters):
                    lan_df.append(self._process_fragment_serial(idx, features, lan, window_s, kwargs))

        lan_df = pd.DataFrame(lan_df)

        logging.debug("Validating timestamps")
        core.validate_timestamps(lan_df["timestamp"].tolist())
        lan_df = lan_df.sort_values("timestamp").reset_index(drop=True)

        self.long_analyzers.append(lan)
        dataframes.append(lan_df)

    self.features_df = pd.concat(dataframes)
    self.features_df = self.features_df

    # Collect LOF scores from long recordings
    lof_scores_dict = {}
    for animalday, lrec in zip(self.animaldays, self.long_recordings):
        logging.debug(
            f"Checking LOF scores for {animalday}: has_attr={hasattr(lrec, 'lof_scores')}, "
            f"is_not_none={getattr(lrec, 'lof_scores', None) is not None}"
        )
        if hasattr(lrec, "lof_scores") and lrec.lof_scores is not None:
            lof_scores_dict[animalday] = {
                "lof_scores": lrec.lof_scores.tolist(),
                "channel_names": lrec.channel_names,
            }
            logging.info(f"Added LOF scores for {animalday}: {len(lrec.lof_scores)} channels")

    logging.info(f"Total LOF scores collected: {len(lof_scores_dict)} animal days")

    self.window_analysis_result = WindowAnalysisResult(
        self.features_df,
        self.animal_id,
        self.genotype,
        self.channel_names,
        self.assume_from_number,
        self.bad_channels_dict,
        suppress_short_interval_error,
        lof_scores_dict,
    )

    return self.window_analysis_result

get_all_lof_scores()

Get LOF scores for all recordings.

Returns:

Name Type Description
dict dict

Dictionary mapping animal days to LOF score dictionaries.

Source code in pythoneeg/visualization/results.py
758
759
760
761
762
763
764
def get_all_lof_scores(self) -> dict:
    """Get LOF scores for all recordings.

    Returns:
        dict: Dictionary mapping animal days to LOF score dictionaries.
    """
    return {animalday: lrec.get_lof_scores() for animalday, lrec in zip(self.animaldays, self.long_recordings)}

get_timeline_summary()

Get timeline summary as a DataFrame for user inspection and debugging.

Returns:

Type Description
DataFrame

pd.DataFrame: Timeline information with columns: - lro_index: Index of the LRO - start_time: Start datetime of the LRO - end_time: End datetime of the LRO - duration_s: Duration in seconds - n_files: Number of files in the LRO - folder_path: Base folder path - animalday: Parsed animalday identifier

Source code in pythoneeg/visualization/results.py
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
def get_timeline_summary(self) -> pd.DataFrame:
    """
    Get timeline summary as a DataFrame for user inspection and debugging.

    Returns:
        pd.DataFrame: Timeline information with columns:
            - lro_index: Index of the LRO
            - start_time: Start datetime of the LRO
            - end_time: End datetime of the LRO
            - duration_s: Duration in seconds
            - n_files: Number of files in the LRO
            - folder_path: Base folder path
            - animalday: Parsed animalday identifier
    """
    if not self.long_recordings:
        return pd.DataFrame()

    timeline_data = []
    for i, lro in enumerate(self.long_recordings):
        try:
            start_time = self._get_lro_start_time(lro)
            end_time = self._get_lro_end_time(lro)
            duration = (
                lro.LongRecording.get_duration() if hasattr(lro, "LongRecording") and lro.LongRecording else 0
            )
            n_files = len(lro.file_durations) if hasattr(lro, "file_durations") and lro.file_durations else 1
            folder_path = getattr(lro, "base_folder_path", "unknown")

            timeline_data.append(
                {
                    "lro_index": i,
                    "start_time": start_time,
                    "end_time": end_time,
                    "duration_s": duration,
                    "n_files": n_files,
                    "folder_path": str(folder_path),
                    "folder_name": Path(folder_path).name if folder_path != "unknown" else "unknown",
                    "animalday": getattr(
                        lro, "_animalday", "unknown"
                    ),  # This might not exist, but useful if it does
                }
            )
        except Exception as e:
            # Include failed LROs in the summary for debugging
            timeline_data.append(
                {
                    "lro_index": i,
                    "start_time": "error",
                    "end_time": "error",
                    "duration_s": 0,
                    "n_files": 0,
                    "folder_path": "error",
                    "folder_name": "error",
                    "animalday": "error",
                    "error": str(e),
                }
            )

    return pd.DataFrame(timeline_data)

SpikeAnalysisResult

Bases: AnimalFeatureParser

Source code in pythoneeg/visualization/results.py
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
class SpikeAnalysisResult(AnimalFeatureParser):
    def __init__(
        self,
        result_sas: list[si.SortingAnalyzer],
        result_mne: mne.io.RawArray = None,
        animal_id: str = None,
        genotype: str = None,
        animal_day: str = None,
        bin_folder_name: str = None,
        metadata: core.DDFBinaryMetadata = None,
        channel_names: list[str] = None,
        assume_from_number=False,
    ) -> None:
        """
        Args:
            result (list[si.SortingAnalyzer]): Result comes from AnimalOrganizer.compute_spike_analysis(). Each SortingAnalyzer is a single channel.
            animal_id (str, optional): Identifier for the animal where result was computed from. Defaults to None.
            genotype (str, optional): Genotype of animal. Defaults to None.
            channel_names (list[str], optional): List of channel names. Defaults to None.
            assume_channels (bool, optional): If true, assumes channel names according to AnimalFeatureParser.DEFAULT_CHNUM_TO_NAME. Defaults to False.
        """
        self.result_sas = result_sas
        self.result_mne = result_mne
        if (result_mne is None) == (result_sas is None):
            raise ValueError("Exactly one of result_sas or result_mne must be provided")
        self.animal_id = animal_id
        self.genotype = genotype
        self.animal_day = animal_day
        self.bin_folder_name = bin_folder_name
        self.metadata = metadata
        self.channel_names = channel_names
        self.assume_from_number = assume_from_number
        self.channel_abbrevs = [
            core.parse_chname_to_abbrev(x, assume_from_number=assume_from_number) for x in self.channel_names
        ]

        logging.info(f"Channel names: \t{self.channel_names}")
        logging.info(f"Channel abbreviations: \t{self.channel_abbrevs}")

    def convert_to_mne(self, chunk_len: float = 60, save_raw=True) -> mne.io.RawArray:
        if self.result_mne is None:
            result_mne = SpikeAnalysisResult.convert_sas_to_mne(self.result_sas, chunk_len)
            if save_raw:
                self.result_mne = result_mne
            else:
                return result_mne
        return self.result_mne

    def save_fif_and_json(
        self,
        folder: str | Path,
        convert_to_mne=True,
        make_folder=True,
        slugify_filebase=True,
        save_abbrevs_as_chnames=False,
        overwrite=False,
    ):
        """Archive spike analysis result into the folder specified, as a fif and json file.

        Args:
            folder (str | Path): Destination folder to save results to
            convert_to_mne (bool, optional): If True, convert the SortingAnalyzers to a MNE RawArray if self.result_mne is None. Defaults to True.
            make_folder (bool, optional): If True, create the folder if it doesn't exist. Defaults to True.
            slugify_filebase (bool, optional): If True, slugify the filebase (replace special characters). Defaults to True.
            save_abbrevs_as_chnames (bool, optional): If True, save the channel abbreviations as the channel names in the json file. Defaults to False.
            overwrite (bool, optional): If True, overwrite the existing files. Defaults to False.
        """
        if self.result_mne is None:
            if convert_to_mne:
                result_mne = self.convert_to_mne(save_raw=True)
                if result_mne is None:
                    warnings.warn("No SortingAnalyzers found, skipping saving")
                    return
            else:
                raise ValueError("No MNE RawArray found, and convert_to_mne is False. Run convert_to_mne() first.")
        else:
            result_mne = self.result_mne

        folder = Path(folder)
        if make_folder:
            folder.mkdir(parents=True, exist_ok=True)

        if slugify_filebase:
            filebase = folder / slugify(f"{self.animal_id}-{self.genotype}-{self.animal_day}")
        else:
            filebase = folder / f"{self.animal_id}-{self.genotype}-{self.animal_day}"
        filebase = str(filebase)

        if not overwrite:
            if filebase + ".json" in folder.glob("*.json"):
                raise FileExistsError(f"File {filebase}.json already exists")
            if filebase + ".fif" in folder.glob("*.fif"):
                raise FileExistsError(f"File {filebase}.fif already exists")
        else:
            for f in folder.glob("*"):
                f.unlink()
        result_mne.save(filebase + "-raw.fif", overwrite=overwrite)
        del result_mne

        json_dict = {
            "animal_id": self.animal_id,
            "genotype": self.genotype,
            "animal_day": self.animal_day,
            "bin_folder_name": self.bin_folder_name,
            "metadata": self.metadata.metadata_path,
            "channel_names": self.channel_abbrevs if save_abbrevs_as_chnames else self.channel_names,
            "assume_from_number": False if save_abbrevs_as_chnames else self.assume_from_number,
        }
        with open(filebase + ".json", "w") as f:
            json.dump(json_dict, f, indent=2)

    @classmethod
    def load_fif_and_json(cls, folder: str | Path):
        folder = Path(folder)
        if not folder.exists():
            raise ValueError(f"Folder {folder} does not exist")

        fif_files = list(folder.glob("*.fif"))  # there may be more than 1 fif file
        json_files = list(folder.glob("*.json"))

        if len(json_files) != 1:
            raise ValueError(f"Expected exactly one json file in {folder}")

        fif_path = fif_files[0]
        json_path = json_files[0]

        with open(json_path, "r") as f:
            data = json.load(f)
        # data['metadata'] = core.DDFBinaryMetadata(data['metadata'])
        data["result_mne"] = mne.io.read_raw_fif(fif_path)
        data["result_sas"] = None
        return cls(**data)

    @staticmethod
    def convert_sas_to_mne(sas: list[si.SortingAnalyzer], chunk_len: float = 60) -> mne.io.RawArray:
        """Convert a list of SortingAnalyzers to a MNE RawArray.

        Args:
            sas (list[si.SortingAnalyzer]): The list of SortingAnalyzers to convert
            chunk_len (float, optional): The length of the chunks to use for the conversion. Defaults to 60.

        Returns:
            mne.io.RawArray: The converted RawArray, with spikes labeled as annotations
        """
        if len(sas) == 0:
            return None

        # Check that all SortingAnalyzers have the same sampling frequency
        sfreqs = [sa.recording.get_sampling_frequency() for sa in sas]
        if not all(sf == sfreqs[0] for sf in sfreqs):
            raise ValueError(f"All SortingAnalyzers must have the same sampling frequency. Got frequencies: {sfreqs}")

        # Preallocate data array
        total_frames = int(sas[0].recording.get_duration() * sfreqs[0])
        n_channels = len(sas)
        data = np.empty((n_channels, total_frames))
        logging.debug(f"Data shape: {data.shape}")

        # Fill data array one channel at a time
        for i, sa in enumerate(sas):
            logging.debug(f"Converting channel {i + 1} of {n_channels}")
            data[i, :] = SpikeAnalysisResult.convert_sa_to_np(sa, chunk_len)

        channel_names = [str(sa.recording.get_channel_ids().item()) for sa in sas]
        logging.debug(f"Channel names: {channel_names}")
        sfreq = sfreqs[0]

        # Extract spike times for each unit and create annotations
        onset = []
        description = []
        for sa in sas:
            for unit_id in sa.sorting.get_unit_ids():
                spike_train = sa.sorting.get_unit_spike_train(unit_id)
                # Convert to seconds and filter to recording duration
                spike_times = spike_train / sa.sorting.get_sampling_frequency()
                mask = spike_times < sa.recording.get_duration()
                spike_times = spike_times[mask]

                # Create annotation for each spike
                onset.extend(spike_times)
                description.extend(
                    [sa.recording.get_channel_ids().item()] * len(spike_times)
                )  # collapse all units into 1 spike train
        annotations = mne.Annotations(onset, duration=0, description=description)

        info = mne.create_info(ch_names=channel_names, sfreq=sfreq, ch_types="eeg")
        raw = mne.io.RawArray(data=data, info=info)
        raw = raw.set_annotations(annotations)
        return raw

    @staticmethod
    def convert_sa_to_np(sa: si.SortingAnalyzer, chunk_len: float = 60) -> np.ndarray:
        """Convert a SortingAnalyzer to an MNE RawArray.

        Args:
            sa (si.SortingAnalyzer): The SortingAnalyzer to convert. Must have only 1 channel.
            chunk_len (float, optional): The length of the chunks to use for the conversion. Defaults to 60.
        Returns:
            np.ndarray: The converted traces
        """
        # Check that SortingAnalyzer only has 1 channel
        if len(sa.recording.get_channel_ids()) != 1:
            raise ValueError(
                f"Expected SortingAnalyzer to have 1 channel, but got {len(sa.recording.get_channel_ids())} channels"
            )

        rec = sa.recording
        logging.debug(f"Recording info: {rec}")

        # Calculate total number of frames and chunks
        total_frames = int(rec.get_duration() * rec.get_sampling_frequency())
        frames_per_chunk = round(chunk_len * rec.get_sampling_frequency())
        n_chunks = total_frames // frames_per_chunk

        traces = np.empty(total_frames)

        for j in range(n_chunks):
            start_frame = j * frames_per_chunk
            if j == n_chunks - 1:
                end_frame = total_frames
            else:
                end_frame = (j + 1) * frames_per_chunk
            traces[start_frame:end_frame] = rec.get_traces(
                start_frame=start_frame, end_frame=end_frame, return_scaled=True
            ).flatten()
        traces *= 1e-6  # convert from uV to V
        return traces

__init__(result_sas, result_mne=None, animal_id=None, genotype=None, animal_day=None, bin_folder_name=None, metadata=None, channel_names=None, assume_from_number=False)

Parameters:

Name Type Description Default
result list[SortingAnalyzer]

Result comes from AnimalOrganizer.compute_spike_analysis(). Each SortingAnalyzer is a single channel.

required
animal_id str

Identifier for the animal where result was computed from. Defaults to None.

None
genotype str

Genotype of animal. Defaults to None.

None
channel_names list[str]

List of channel names. Defaults to None.

None
assume_channels bool

If true, assumes channel names according to AnimalFeatureParser.DEFAULT_CHNUM_TO_NAME. Defaults to False.

required
Source code in pythoneeg/visualization/results.py
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
def __init__(
    self,
    result_sas: list[si.SortingAnalyzer],
    result_mne: mne.io.RawArray = None,
    animal_id: str = None,
    genotype: str = None,
    animal_day: str = None,
    bin_folder_name: str = None,
    metadata: core.DDFBinaryMetadata = None,
    channel_names: list[str] = None,
    assume_from_number=False,
) -> None:
    """
    Args:
        result (list[si.SortingAnalyzer]): Result comes from AnimalOrganizer.compute_spike_analysis(). Each SortingAnalyzer is a single channel.
        animal_id (str, optional): Identifier for the animal where result was computed from. Defaults to None.
        genotype (str, optional): Genotype of animal. Defaults to None.
        channel_names (list[str], optional): List of channel names. Defaults to None.
        assume_channels (bool, optional): If true, assumes channel names according to AnimalFeatureParser.DEFAULT_CHNUM_TO_NAME. Defaults to False.
    """
    self.result_sas = result_sas
    self.result_mne = result_mne
    if (result_mne is None) == (result_sas is None):
        raise ValueError("Exactly one of result_sas or result_mne must be provided")
    self.animal_id = animal_id
    self.genotype = genotype
    self.animal_day = animal_day
    self.bin_folder_name = bin_folder_name
    self.metadata = metadata
    self.channel_names = channel_names
    self.assume_from_number = assume_from_number
    self.channel_abbrevs = [
        core.parse_chname_to_abbrev(x, assume_from_number=assume_from_number) for x in self.channel_names
    ]

    logging.info(f"Channel names: \t{self.channel_names}")
    logging.info(f"Channel abbreviations: \t{self.channel_abbrevs}")

convert_sa_to_np(sa, chunk_len=60) staticmethod

Convert a SortingAnalyzer to an MNE RawArray.

Parameters:

Name Type Description Default
sa SortingAnalyzer

The SortingAnalyzer to convert. Must have only 1 channel.

required
chunk_len float

The length of the chunks to use for the conversion. Defaults to 60.

60

Returns: np.ndarray: The converted traces

Source code in pythoneeg/visualization/results.py
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
@staticmethod
def convert_sa_to_np(sa: si.SortingAnalyzer, chunk_len: float = 60) -> np.ndarray:
    """Convert a SortingAnalyzer to an MNE RawArray.

    Args:
        sa (si.SortingAnalyzer): The SortingAnalyzer to convert. Must have only 1 channel.
        chunk_len (float, optional): The length of the chunks to use for the conversion. Defaults to 60.
    Returns:
        np.ndarray: The converted traces
    """
    # Check that SortingAnalyzer only has 1 channel
    if len(sa.recording.get_channel_ids()) != 1:
        raise ValueError(
            f"Expected SortingAnalyzer to have 1 channel, but got {len(sa.recording.get_channel_ids())} channels"
        )

    rec = sa.recording
    logging.debug(f"Recording info: {rec}")

    # Calculate total number of frames and chunks
    total_frames = int(rec.get_duration() * rec.get_sampling_frequency())
    frames_per_chunk = round(chunk_len * rec.get_sampling_frequency())
    n_chunks = total_frames // frames_per_chunk

    traces = np.empty(total_frames)

    for j in range(n_chunks):
        start_frame = j * frames_per_chunk
        if j == n_chunks - 1:
            end_frame = total_frames
        else:
            end_frame = (j + 1) * frames_per_chunk
        traces[start_frame:end_frame] = rec.get_traces(
            start_frame=start_frame, end_frame=end_frame, return_scaled=True
        ).flatten()
    traces *= 1e-6  # convert from uV to V
    return traces

convert_sas_to_mne(sas, chunk_len=60) staticmethod

Convert a list of SortingAnalyzers to a MNE RawArray.

Parameters:

Name Type Description Default
sas list[SortingAnalyzer]

The list of SortingAnalyzers to convert

required
chunk_len float

The length of the chunks to use for the conversion. Defaults to 60.

60

Returns:

Type Description
RawArray

mne.io.RawArray: The converted RawArray, with spikes labeled as annotations

Source code in pythoneeg/visualization/results.py
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
@staticmethod
def convert_sas_to_mne(sas: list[si.SortingAnalyzer], chunk_len: float = 60) -> mne.io.RawArray:
    """Convert a list of SortingAnalyzers to a MNE RawArray.

    Args:
        sas (list[si.SortingAnalyzer]): The list of SortingAnalyzers to convert
        chunk_len (float, optional): The length of the chunks to use for the conversion. Defaults to 60.

    Returns:
        mne.io.RawArray: The converted RawArray, with spikes labeled as annotations
    """
    if len(sas) == 0:
        return None

    # Check that all SortingAnalyzers have the same sampling frequency
    sfreqs = [sa.recording.get_sampling_frequency() for sa in sas]
    if not all(sf == sfreqs[0] for sf in sfreqs):
        raise ValueError(f"All SortingAnalyzers must have the same sampling frequency. Got frequencies: {sfreqs}")

    # Preallocate data array
    total_frames = int(sas[0].recording.get_duration() * sfreqs[0])
    n_channels = len(sas)
    data = np.empty((n_channels, total_frames))
    logging.debug(f"Data shape: {data.shape}")

    # Fill data array one channel at a time
    for i, sa in enumerate(sas):
        logging.debug(f"Converting channel {i + 1} of {n_channels}")
        data[i, :] = SpikeAnalysisResult.convert_sa_to_np(sa, chunk_len)

    channel_names = [str(sa.recording.get_channel_ids().item()) for sa in sas]
    logging.debug(f"Channel names: {channel_names}")
    sfreq = sfreqs[0]

    # Extract spike times for each unit and create annotations
    onset = []
    description = []
    for sa in sas:
        for unit_id in sa.sorting.get_unit_ids():
            spike_train = sa.sorting.get_unit_spike_train(unit_id)
            # Convert to seconds and filter to recording duration
            spike_times = spike_train / sa.sorting.get_sampling_frequency()
            mask = spike_times < sa.recording.get_duration()
            spike_times = spike_times[mask]

            # Create annotation for each spike
            onset.extend(spike_times)
            description.extend(
                [sa.recording.get_channel_ids().item()] * len(spike_times)
            )  # collapse all units into 1 spike train
    annotations = mne.Annotations(onset, duration=0, description=description)

    info = mne.create_info(ch_names=channel_names, sfreq=sfreq, ch_types="eeg")
    raw = mne.io.RawArray(data=data, info=info)
    raw = raw.set_annotations(annotations)
    return raw

save_fif_and_json(folder, convert_to_mne=True, make_folder=True, slugify_filebase=True, save_abbrevs_as_chnames=False, overwrite=False)

Archive spike analysis result into the folder specified, as a fif and json file.

Parameters:

Name Type Description Default
folder str | Path

Destination folder to save results to

required
convert_to_mne bool

If True, convert the SortingAnalyzers to a MNE RawArray if self.result_mne is None. Defaults to True.

True
make_folder bool

If True, create the folder if it doesn't exist. Defaults to True.

True
slugify_filebase bool

If True, slugify the filebase (replace special characters). Defaults to True.

True
save_abbrevs_as_chnames bool

If True, save the channel abbreviations as the channel names in the json file. Defaults to False.

False
overwrite bool

If True, overwrite the existing files. Defaults to False.

False
Source code in pythoneeg/visualization/results.py
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
def save_fif_and_json(
    self,
    folder: str | Path,
    convert_to_mne=True,
    make_folder=True,
    slugify_filebase=True,
    save_abbrevs_as_chnames=False,
    overwrite=False,
):
    """Archive spike analysis result into the folder specified, as a fif and json file.

    Args:
        folder (str | Path): Destination folder to save results to
        convert_to_mne (bool, optional): If True, convert the SortingAnalyzers to a MNE RawArray if self.result_mne is None. Defaults to True.
        make_folder (bool, optional): If True, create the folder if it doesn't exist. Defaults to True.
        slugify_filebase (bool, optional): If True, slugify the filebase (replace special characters). Defaults to True.
        save_abbrevs_as_chnames (bool, optional): If True, save the channel abbreviations as the channel names in the json file. Defaults to False.
        overwrite (bool, optional): If True, overwrite the existing files. Defaults to False.
    """
    if self.result_mne is None:
        if convert_to_mne:
            result_mne = self.convert_to_mne(save_raw=True)
            if result_mne is None:
                warnings.warn("No SortingAnalyzers found, skipping saving")
                return
        else:
            raise ValueError("No MNE RawArray found, and convert_to_mne is False. Run convert_to_mne() first.")
    else:
        result_mne = self.result_mne

    folder = Path(folder)
    if make_folder:
        folder.mkdir(parents=True, exist_ok=True)

    if slugify_filebase:
        filebase = folder / slugify(f"{self.animal_id}-{self.genotype}-{self.animal_day}")
    else:
        filebase = folder / f"{self.animal_id}-{self.genotype}-{self.animal_day}"
    filebase = str(filebase)

    if not overwrite:
        if filebase + ".json" in folder.glob("*.json"):
            raise FileExistsError(f"File {filebase}.json already exists")
        if filebase + ".fif" in folder.glob("*.fif"):
            raise FileExistsError(f"File {filebase}.fif already exists")
    else:
        for f in folder.glob("*"):
            f.unlink()
    result_mne.save(filebase + "-raw.fif", overwrite=overwrite)
    del result_mne

    json_dict = {
        "animal_id": self.animal_id,
        "genotype": self.genotype,
        "animal_day": self.animal_day,
        "bin_folder_name": self.bin_folder_name,
        "metadata": self.metadata.metadata_path,
        "channel_names": self.channel_abbrevs if save_abbrevs_as_chnames else self.channel_names,
        "assume_from_number": False if save_abbrevs_as_chnames else self.assume_from_number,
    }
    with open(filebase + ".json", "w") as f:
        json.dump(json_dict, f, indent=2)

WindowAnalysisResult

Bases: AnimalFeatureParser

Wrapper for output of windowed analysis. Has useful functions like group-wise and global averaging, filtering, and saving

Source code in pythoneeg/visualization/results.py
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
class WindowAnalysisResult(AnimalFeatureParser):
    """
    Wrapper for output of windowed analysis. Has useful functions like group-wise and global averaging, filtering, and saving
    """

    def __init__(
        self,
        result: pd.DataFrame,
        animal_id: str = None,
        genotype: str = None,
        channel_names: list[str] = None,
        assume_from_number=False,
        bad_channels_dict: dict[str, list[str]] = {},
        suppress_short_interval_error=False,
        lof_scores_dict: dict[str, dict] = {},
    ) -> None:
        """
        Args:
            result (pd.DataFrame): Result comes from AnimalOrganizer.compute_windowed_analysis()
            animal_id (str, optional): Identifier for the animal where result was computed from. Defaults to None.
            genotype (str, optional): Genotype of animal. Defaults to None.
            channel_names (list[str], optional): List of channel names. Defaults to None.
            assume_channels (bool, optional): If true, assumes channel names according to AnimalFeatureParser.DEFAULT_CHNUM_TO_NAME. Defaults to False.
            bad_channels_dict (dict[str, list[str]], optional): Dictionary of channels to reject for each recording session. Defaults to {}.
            suppress_short_interval_error (bool, optional): If True, suppress ValueError for short intervals between timestamps. Useful for aggregated WARs with large window sizes. Defaults to False.
        """
        self.result = result
        self.animal_id = animal_id
        self.genotype = genotype
        self.channel_names = channel_names
        self.assume_from_number = assume_from_number
        self.bad_channels_dict = bad_channels_dict.copy()
        self.suppress_short_interval_error = suppress_short_interval_error
        self.lof_scores_dict = lof_scores_dict

        self.__update_instance_vars()

        print(f"Channel names: \t{self.channel_names}")
        print(f"Channel abbreviations: \t{self.channel_abbrevs}")

    def __str__(self) -> str:
        return f"{self.animaldays}"

    def __update_instance_vars(self):
        """Run after updating self.result, or other init values"""
        if "index" in self.result.columns:
            warnings.warn("Dropping column 'index'")
            self.result = self.result.drop(columns=["index"])

        # Check if timestamps are sorted and sort if needed
        if "timestamp" in self.result.columns:
            if not self.result["timestamp"].is_monotonic_increasing:
                warnings.warn("Timestamps are not sorted. Sorting result DataFrame by timestamp.")
                self.result = self.result.sort_values("timestamp")

        # Check for unusually short intervals between timestamps
        if "timestamp" in self.result.columns and "duration" in self.result.columns:
            median_duration = self.result["duration"].median()
            timestamp_diffs = self.result["timestamp"].diff()
            short_intervals = timestamp_diffs < pd.Timedelta(seconds=median_duration)

            # Skip first row since diff() produces NaT
            short_intervals = short_intervals[1:]

            if short_intervals.any():
                n_short = short_intervals.sum()
                pct_short = (n_short / len(short_intervals)) * 100

                warning_msg = (
                    f"Found {n_short} intervals ({pct_short:.1f}%) between timestamps "
                    f"that are shorter than the median duration of {median_duration:.1f}s"
                )

                if pct_short > 1.0 and not self.suppress_short_interval_error:  # More than 1% of intervals are short
                    raise ValueError(warning_msg)
                elif not self.suppress_short_interval_error:
                    warnings.warn(warning_msg)

        if "animal" in self.result.columns:
            unique_animals = self.result["animal"].unique()
            if len(unique_animals) > 1:
                raise ValueError(f"Multiple animals found in result: {unique_animals}")
            if unique_animals[0] != self.animal_id:
                raise ValueError(
                    f"Animal ID mismatch: result has {unique_animals[0]}, but self.animal_id is {self.animal_id}"
                )

        self._feature_columns = [x for x in self.result.columns if x in constants.FEATURES]
        self._nonfeature_columns = [x for x in self.result.columns if x not in constants.FEATURES]
        self.animaldays = self.result.loc[:, "animalday"].unique()

        self.channel_abbrevs = [
            core.parse_chname_to_abbrev(x, assume_from_number=self.assume_from_number) for x in self.channel_names
        ]

    def reorder_and_pad_channels(
        self, target_channels: list[str], use_abbrevs: bool = True, inplace: bool = True
    ) -> pd.DataFrame:
        """Reorder and pad channels to match a target channel list.

        This method ensures that the data has a consistent channel order and structure
        by reordering existing channels and padding missing channels with NaNs.

        Args:
            target_channels (list[str]): List of target channel names to match
            use_abbrevs (bool, optional): If True, target channel names are read as channel abbreviations instead of channel names. Defaults to True.
            inplace (bool, optional): If True, modify the result in place. Defaults to True.
        Returns:
            pd.DataFrame: DataFrame with reordered and padded channels
        """
        duplicates = [ch for ch in target_channels if target_channels.count(ch) > 1]
        if duplicates:
            raise ValueError(f"Target channels must be unique. Found duplicates: {duplicates}")

        result = self.result.copy()

        channel_map = {ch: i for i, ch in enumerate(target_channels)}
        channel_names = self.channel_names if not use_abbrevs else self.channel_abbrevs

        valid_channels = [ch for ch in channel_names if ch in channel_map]
        if not valid_channels:
            warnings.warn(
                f"None of the channel names {channel_names} were found in target channels {target_channels}. Is use_abbrevs correctly set?"
            )

        for feature in self._feature_columns:
            match feature:
                case _ if feature in constants.LINEAR_FEATURES + constants.BAND_FEATURES:
                    if feature in constants.BAND_FEATURES:
                        df_bands = pd.DataFrame(result[feature].tolist())
                        vals = np.array(df_bands.values.tolist())
                        vals = vals.transpose((0, 2, 1))
                        keys = df_bands.keys()
                    else:
                        vals = np.array(result[feature].tolist())

                    new_vals = np.full((vals.shape[0], len(target_channels), *vals.shape[2:]), np.nan)  # dubious

                    for i, ch in enumerate(channel_names):
                        if ch in channel_map:
                            new_vals[:, channel_map[ch]] = vals[:, i]

                    if feature in constants.BAND_FEATURES:
                        new_vals = new_vals.transpose((0, 2, 1))
                        result[feature] = [dict(zip(keys, vals)) for vals in new_vals]
                    else:
                        result[feature] = [list(x) for x in new_vals]

                case _ if feature in constants.MATRIX_FEATURES:
                    if feature in ["cohere", "zcohere", "imcoh", "zimcoh"]:
                        df_bands = pd.DataFrame(result[feature].tolist())
                        vals = np.array(df_bands.values.tolist())
                        keys = df_bands.keys()
                    else:
                        vals = np.array(result[feature].tolist())

                    logging.debug(f"vals.shape: {vals.shape}")
                    new_shape = list(vals.shape[:-2]) + [len(target_channels), len(target_channels)]
                    new_vals = np.full(new_shape, np.nan)

                    # Map original channels to target channels
                    for i, ch1 in enumerate(channel_names):
                        if ch1 in channel_map:
                            for j, ch2 in enumerate(channel_names):
                                if ch2 in channel_map:
                                    new_vals[..., channel_map[ch1], channel_map[ch2]] = vals[..., i, j]

                    if feature in ["cohere", "zcohere", "imcoh", "zimcoh"]:
                        result[feature] = [dict(zip(keys, vals)) for vals in new_vals]
                    else:
                        result[feature] = [list(x) for x in new_vals]

                case _ if feature in constants.HIST_FEATURES:
                    coords = np.array([x[0] for x in result[feature].tolist()])
                    vals = np.array([x[1] for x in result[feature].tolist()])
                    new_vals = np.full((*vals.shape[0:-1], len(target_channels)), np.nan)

                    for i, ch in enumerate(channel_names):
                        if ch in channel_map:
                            new_vals[:, ..., channel_map[ch]] = vals[:, ..., i]

                    result[feature] = [(coords[i], new_vals[i]) for i in range(len(coords))]

                case _:
                    raise ValueError(f"Invalid feature: {feature}")

        if inplace:
            self.result = result

            logging.debug(f"Old channel names: {self.channel_names}")
            self.channel_names = target_channels
            logging.debug(f"New channel names: {self.channel_names}")

            logging.debug(f"Old channel abbreviations: {self.channel_abbrevs}")
            self.__update_instance_vars()
            logging.debug(f"New channel abbreviations: {self.channel_abbrevs}")

        return result

    def read_sars_spikes(self, sars: list["SpikeAnalysisResult"], read_mode: Literal["sa", "mne"] = "sa", inplace=True):
        match read_mode:
            case "sa":
                spikes_all = []
                for sar in sars:  # for each continuous recording session
                    spikes_channel = []
                    for i, sa in enumerate(sar.result_sas):  # for each channel
                        spike_times = []
                        for unit in sa.sorting.get_unit_ids():  # Flatten units
                            spike_times.extend(sa.sorting.get_unit_spike_train(unit_id=unit).tolist())
                        spike_times = np.array(spike_times) / sa.sorting.get_sampling_frequency()
                        spikes_channel.append(spike_times)
                    spikes_all.append(spikes_channel)
                return self._read_from_spikes_all(spikes_all, inplace=inplace)
            case "mne":
                raws = [sar.result_mne for sar in sars]
                return self.read_mnes_spikes(raws, inplace=inplace)
            case _:
                raise ValueError(f"Invalid read_mode: {read_mode}")

    def read_mnes_spikes(self, raws: list[mne.io.RawArray], inplace=True):
        spikes_all = []
        for raw in raws:
            # each mne is a contiguous recording session
            events, event_id = mne.events_from_annotations(raw)
            event_id = {k.item(): v for k, v in event_id.items()}

            spikes_channel = []
            for channel in raw.ch_names:
                if channel not in event_id.keys():
                    logging.warning(f"Channel {channel} not found in event_id")
                    spikes_channel.append([])
                    continue
                event_id_channel = event_id[channel]
                spike_times = events[events[:, 2] == event_id_channel, 0]
                spike_times = spike_times / raw.info["sfreq"]
                spikes_channel.append(spike_times)
            spikes_all.append(spikes_channel)
        return self._read_from_spikes_all(spikes_all, inplace=inplace)

    def _read_from_spikes_all(self, spikes_all: list[list[list[float]]], inplace=True):
        # Each groupby animalday is a recording session
        grouped = self.result.groupby("animalday")
        animaldays = grouped.groups.keys()
        logging.debug(f"Animal days: {animaldays}")
        spike_counts = dict(zip(animaldays, spikes_all))
        spike_counts = grouped.apply(lambda x: _bin_spike_df(x, spikes_channel=spike_counts[x.name]))
        spike_counts: pd.Series = spike_counts.explode()

        if spike_counts.size != self.result.shape[0]:
            logging.warning(f"Spike counts size {spike_counts.size} does not match result size {self.result.shape[0]}")

        result = self.result.copy()
        result["nspike"] = spike_counts.tolist()
        result["lognspike"] = list(core.log_transform(np.stack(result["nspike"].tolist(), axis=0)))
        if inplace:
            self.result = result
        return result

    def get_info(self):
        """Returns a formatted string with basic information about the WindowAnalysisResult object"""
        info = []
        info.append(f"feature names: {', '.join(self._feature_columns)}")
        info.append(f"animaldays: {', '.join(self.result['animalday'].unique())}")
        info.append(
            f"animal_id: {self.result['animal'].unique()[0] if 'animal' in self.result.columns else self.animal_id}"
        )
        info.append(
            f"genotype: {self.result['genotype'].unique()[0] if 'genotype' in self.result.columns else self.genotype}"
        )
        info.append(f"channel_names: {', '.join(self.channel_names) if self.channel_names else 'None'}")

        return "\n".join(info)

    def get_result(self, features: list[str], exclude: list[str] = [], allow_missing=False):
        """Get windowed analysis result dataframe, with helpful filters

        Args:
            features (list[str]): List of features to get from result
            exclude (list[str], optional): List of features to exclude from result; will override the features parameter. Defaults to [].
            allow_missing (bool, optional): If True, will return all requested features as columns regardless if they exist in result. Defaults to False.

        Returns:
            result: pd.DataFrame object with features in columns and windows in rows
        """
        features = _sanitize_feature_request(features, exclude)
        if not allow_missing:
            return self.result.loc[:, self._nonfeature_columns + features]
        else:
            return self.result.reindex(columns=self._nonfeature_columns + features)

    def get_groupavg_result(
        self, features: list[str], exclude: list[str] = [], df: pd.DataFrame = None, groupby="animalday"
    ):
        """Group result and average within groups. Preserves data structure and shape for each feature.

        Args:
            features (list[str]): List of features to get from result
            exclude (list[str], optional): List of features to exclude from result. Will override the features parameter. Defaults to [].
            df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
            groupby (str, optional): Feature or list of features to group by before averaging. Passed to the `by` parameter in pd.DataFrame.groupby(). Defaults to "animalday".

        Returns:
            grouped_result: result grouped by `groupby` and averaged for each group.
        """
        result_grouped, result_validcols = self.__get_groups(features=features, exclude=exclude, df=df, groupby=groupby)
        features = _sanitize_feature_request(features, exclude)

        avg_results = []
        for f in features:
            if f in result_validcols:
                avg_result_col = result_grouped.apply(self._average_feature, f, "duration", include_groups=False)
                avg_result_col.name = f
                avg_results.append(avg_result_col)
            else:
                logging.warning(f"{f} not calculated, skipping")

        return pd.concat(avg_results, axis=1)

    def __get_groups(self, features: list[str], exclude: list[str] = [], df: pd.DataFrame = None, groupby="animalday"):
        features = _sanitize_feature_request(features, exclude)
        result_win = self.result if df is None else df
        return result_win.groupby(groupby), result_win.columns

    def get_grouprows_result(
        self,
        features: list[str],
        exclude: list[str] = [],
        df: pd.DataFrame = None,
        multiindex=["animalday", "animal", "genotype"],
        include=["duration", "endfile"],
    ):
        features = _sanitize_feature_request(features, exclude)
        result_win = self.result if df is None else df
        result_win = result_win.filter(features + multiindex + include)
        return result_win.set_index(multiindex)

    def get_filter_logrms_range(self, df: pd.DataFrame = None, z_range=3, **kwargs):
        """Filter windows based on log(rms).

        Args:
            df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
            z_range (float, optional): The z-score range to filter by. Values outside this range will be set to NaN.

        Returns:
            out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
        """
        result = df.copy() if df is not None else self.result.copy()
        z_range = abs(z_range)
        np_rms = np.array(result["rms"].tolist())
        np_logrms = np.log(np_rms)
        del np_rms
        np_logrmsz = zscore(np_logrms, axis=0, nan_policy="omit")
        np_logrms[(np_logrmsz > z_range) | (np_logrmsz < -z_range)] = np.nan

        out = np.full(np_logrms.shape, True)
        out[(np_logrmsz > z_range) | (np_logrmsz < -z_range)] = False
        return out

    def get_filter_high_rms(self, df: pd.DataFrame = None, max_rms=500, **kwargs):
        """Filter windows based on rms.

        Args:
            df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
            max_rms (float, optional): The maximum rms value to filter by. Values above this will be set to NaN.

        Returns:
            out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
        """
        result = df.copy() if df is not None else self.result.copy()
        np_rms = np.array(result["rms"].tolist())
        np_rmsnan = np_rms.copy()
        # Convert to float to allow NaN assignment for integer arrays
        if np_rmsnan.dtype.kind in ("i", "u"):  # integer types
            np_rmsnan = np_rmsnan.astype(float)
        np_rmsnan[np_rms > max_rms] = np.nan
        result["rms"] = np_rmsnan.tolist()

        out = np.full(np_rms.shape, True)
        out[np_rms > max_rms] = False
        return out

    def get_filter_low_rms(self, df: pd.DataFrame = None, min_rms=30, **kwargs):
        """Filter windows based on rms.

        Args:
            df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
            min_rms (float, optional): The minimum rms value to filter by. Values below this will be set to NaN.

        Returns:
            out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
        """
        result = df.copy() if df is not None else self.result.copy()
        np_rms = np.array(result["rms"].tolist())
        np_rmsnan = np_rms.copy()
        np_rmsnan[np_rms < min_rms] = np.nan
        result["rms"] = np_rmsnan.tolist()

        out = np.full(np_rms.shape, True)
        out[np_rms < min_rms] = False
        return out

    def get_filter_high_beta(self, df: pd.DataFrame = None, max_beta_prop=0.4, **kwargs):
        """Filter windows based on beta power.

        Args:
            df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
            max_beta_prop (float, optional): The maximum beta power to filter by. Values above this will be set to NaN. Defaults to 0.4.

        Returns:
            out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
        """
        result = df.copy() if df is not None else self.result.copy()
        if "psdfrac" in result.columns:
            df_psdfrac = pd.DataFrame(result["psdfrac"].tolist())
            np_prop = np.array(df_psdfrac["beta"].tolist())
        elif "psdband" in result.columns and "psdtotal" in result.columns:
            df_psdband = pd.DataFrame(result["psdband"].tolist())
            np_beta = np.array(df_psdband["beta"].tolist())
            np_total = np.array(result["psdtotal"].tolist())
            np_prop = np_beta / np_total
        else:
            raise ValueError("psdfrac or psdband+psdtotal required for beta power filtering")

        out = np.full(np_prop.shape, True)
        out[np_prop > max_beta_prop] = False
        out = np.broadcast_to(np.all(out, axis=-1)[:, np.newaxis], out.shape)
        return out

    def get_filter_reject_channels(
        self,
        df: pd.DataFrame = None,
        bad_channels: list[str] = None,
        use_abbrevs: bool = None,
        save_bad_channels: Literal["overwrite", "union", None] = "union",
        **kwargs,
    ):
        """Filter channels to reject.

        Args:
            df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
            bad_channels (list[str]): List of channels to reject. Can be either full channel names or abbreviations.
                The method will automatically detect which format is being used. If None, no filtering is performed.
            use_abbrevs (bool, optional): Override automatic detection. If True, channels are assumed to be channel abbreviations. If False, channels are assumed to be channel names.
                If None, channels are parsed to abbreviations and matched against self.channel_abbrevs.
            save_bad_channels (Literal["overwrite", "union", None], optional): How to save bad channels to self.bad_channels_dict.
                "overwrite": Replace self.bad_channels_dict completely with bad channels applied to all sessions.
                "union": Merge bad channels with existing self.bad_channels_dict for all sessions.
                None: Don't save to self.bad_channels_dict. Defaults to "union".
                Note: When using "overwrite" mode, the bad_channels parameter and bad_channels_dict parameter
                may conflict and overwrite each other's bad channel definitions if both are provided.

        Returns:
            out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
        """
        n_samples = len(self.result)
        n_channels = len(self.channel_names)
        mask = np.ones((n_samples, n_channels), dtype=bool)

        if bad_channels is None:
            return mask

        channel_targets = (
            self.channel_abbrevs if use_abbrevs or use_abbrevs is None else self.channel_names
        )  # Match to appropriate target
        if use_abbrevs is None:  # Match channels as abbreviations
            bad_channels = [
                core.parse_chname_to_abbrev(ch, assume_from_number=self.assume_from_number) for ch in bad_channels
            ]

        # Match channels to channel_targets
        for ch in bad_channels:
            if ch in channel_targets:
                mask[:, channel_targets.index(ch)] = False
            else:
                warnings.warn(f"Channel {ch} not found in {channel_targets}")

        # Save bad channels to self.bad_channels_dict if requested
        if save_bad_channels is not None:
            # Get all unique animal days from the result
            animaldays = self.result["animalday"].unique()

            # Convert bad channels to the format used in bad_channels_dict (original channel names)
            channels_to_save = (
                bad_channels.copy()
                if use_abbrevs is False
                else [
                    core.parse_chname_to_abbrev(ch, assume_from_number=self.assume_from_number) for ch in bad_channels
                ]
            )

            if save_bad_channels == "overwrite":
                # Replace entire dict with bad channels applied to all sessions
                self.bad_channels_dict = {animalday: channels_to_save.copy() for animalday in animaldays}
            elif save_bad_channels == "union":
                # Merge with existing bad channels for all sessions
                updated_dict = self.bad_channels_dict.copy()
                for animalday in animaldays:
                    if animalday in updated_dict:
                        # Union of existing and new channels
                        updated_dict[animalday] = list(set(updated_dict[animalday]) | set(channels_to_save))
                    else:
                        updated_dict[animalday] = channels_to_save.copy()
                self.bad_channels_dict = updated_dict

        return mask

    def get_filter_reject_channels_by_recording_session(
        self,
        df: pd.DataFrame = None,
        bad_channels_dict: dict[str, list[str]] = None,
        use_abbrevs: bool = None,
        save_bad_channels: Literal["overwrite", "union", None] = "union",
        **kwargs,
    ):
        """Filter channels to reject for each recording session

        Args:
            df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
            bad_channels_dict (dict[str, list[str]]): Dictionary of list of channels to reject for each recording session.
                Can be either full channel names or abbreviations. The method will automatically detect which format is being used.
                If None, the method will use the bad_channels_dict passed to the constructor.
            use_abbrevs (bool, optional): Override automatic detection. If True, channels are assumed to be channel abbreviations. If False, channels are assumed to be channel names.
                If None, channels are parsed to abbreviations and matched against self.channel_abbrevs.
            save_bad_channels (Literal["overwrite", "union", None], optional): How to save bad channels to self.bad_channels_dict.
                "overwrite": Replace self.bad_channels_dict completely with bad_channels_dict.
                "union": Merge bad_channels_dict with existing self.bad_channels_dict per session.
                None: Don't save to self.bad_channels_dict. Defaults to "union".
                Note: When using "overwrite" mode, the bad_channels parameter and bad_channels_dict parameter
                may conflict and overwrite each other's bad channel definitions if both are provided.

        Returns:
            out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
        """
        if bad_channels_dict is None:
            bad_channels_dict = self.bad_channels_dict.copy()

        n_samples = len(self.result)
        n_channels = len(self.channel_names)
        mask = np.ones((n_samples, n_channels), dtype=bool)

        # Group by animalday to apply filters per recording session
        for animalday, group in self.result.groupby("animalday"):
            if bad_channels_dict:
                if animalday not in bad_channels_dict:
                    raise ValueError(
                        f"No bad channels specified for recording session {animalday}. Check that all days are present in bad_channels_dict"
                    )
                bad_channels = bad_channels_dict[animalday]
            else:
                bad_channels = []

            channel_targets = self.channel_abbrevs if use_abbrevs or use_abbrevs is None else self.channel_names
            if use_abbrevs is None:
                bad_channels = [
                    core.parse_chname_to_abbrev(ch, assume_from_number=self.assume_from_number) for ch in bad_channels
                ]

            # Get indices for this recording session
            session_indices = group.index

            # Apply channel filtering for this session
            for ch in bad_channels:
                if ch in channel_targets:
                    ch_idx = channel_targets.index(ch)
                    mask[session_indices, ch_idx] = False
                else:
                    logging.warning(f"Channel {ch} not found in {channel_targets} for session {animalday}")

        # Save bad channels to self.bad_channels_dict if requested
        if save_bad_channels is not None and bad_channels_dict is not None:
            if save_bad_channels == "overwrite":
                self.bad_channels_dict = bad_channels_dict.copy()
            elif save_bad_channels == "union":
                # Merge with existing bad channels per session
                updated_dict = self.bad_channels_dict.copy()
                for animalday, channels in bad_channels_dict.items():
                    if animalday in updated_dict:
                        # Union of existing and new channels
                        updated_dict[animalday] = list(set(updated_dict[animalday]) | set(channels))
                    else:
                        updated_dict[animalday] = channels.copy()
                self.bad_channels_dict = updated_dict

        return mask

    def get_filter_morphological_smoothing(
        self, filter_mask: np.ndarray, smoothing_seconds: float, **kwargs
    ) -> np.ndarray:
        """Apply morphological smoothing to a filter mask.

        Args:
            filter_mask (np.ndarray): Input boolean mask of shape (n_windows, n_channels)
            smoothing_seconds (float): Time window in seconds for morphological operations

        Returns:
            np.ndarray: Smoothed boolean mask
        """
        if "duration" not in self.result.columns:
            raise ValueError("Cannot calculate window duration - 'duration' column missing")

        window_duration = self.result["duration"].median()
        structure_size = max(1, int(smoothing_seconds / window_duration))

        if structure_size <= 1:
            return filter_mask

        smoothed_mask = filter_mask.copy()
        for ch_idx in range(filter_mask.shape[1]):
            channel_mask = filter_mask[:, ch_idx]
            # Opening removes small isolated artifacts
            channel_mask = binary_opening(channel_mask, structure=np.ones(structure_size))
            # Closing fills small gaps in valid data
            channel_mask = binary_closing(channel_mask, structure=np.ones(structure_size))
            smoothed_mask[:, ch_idx] = channel_mask

        return smoothed_mask

    def filter_morphological_smoothing(self, smoothing_seconds: float) -> "WindowAnalysisResult":
        """Apply morphological smoothing to all data.

        Args:
            smoothing_seconds (float): Time window in seconds for morphological operations

        Returns:
            WindowAnalysisResult: New filtered instance
        """
        # Start with all-True mask and smooth it
        base_mask = np.ones((len(self.result), len(self.channel_names)), dtype=bool)
        smoothed_mask = self.get_filter_morphological_smoothing(base_mask, smoothing_seconds)
        return self._create_filtered_copy(smoothed_mask)

    def filter_all(
        self,
        df: pd.DataFrame = None,
        inplace=True,
        # bad_channels: list[str] = None,
        min_valid_channels=3,
        filters: list[callable] = None,
        morphological_smoothing_seconds: float = None,
        # save_bad_channels: Literal["overwrite", "union", None] = "union",
        **kwargs,
    ):
        """Apply a list of filters to the data. Filtering should be performed before aggregation.

        Args:
            df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
            inplace (bool, optional): If True, modify the result in place. Defaults to True.
            bad_channels (list[str], optional): List of channels to reject. Defaults to None.
            min_valid_channels (int, optional): Minimum number of valid channels required per window. Defaults to 3.
            filters (list[callable], optional): List of filter functions to apply. Each function should return a boolean mask.
                If None, uses default filters: [get_filter_logrms_range, get_filter_high_rms, get_filter_low_rms, get_filter_high_beta].
                Defaults to None.
            morphological_smoothing_seconds (float, optional): If provided, apply morphological opening/closing to smooth the filter mask.
                This removes isolated false positives/negatives along the time axis for each channel independently.
                The value specifies the time window in seconds for the morphological operations. Defaults to None.
            save_bad_channels (Literal["overwrite", "union", None], optional): How to save bad channels to self.bad_channels_dict.
                This parameter is passed to the filtering functions. Defaults to "union".
                Note: When using "overwrite" mode, the bad_channels parameter and bad_channels_dict parameter
                may conflict and overwrite each other's bad channel definitions if both are provided.
            **kwargs: Additional keyword arguments to pass to filter functions.

        Returns:
            WindowAnalysisResult: Filtered result
        """
        if filters is None:
            # TODO refactor these into standalone functions, which take in a war as the first parameter, then pass
            # filt_bool = filt(self, df, **kwargs) as needed
            filters = [
                self.get_filter_logrms_range,
                self.get_filter_high_rms,
                self.get_filter_low_rms,
                self.get_filter_high_beta,
                self.get_filter_reject_channels_by_recording_session,
                self.get_filter_reject_channels,
            ]

        filt_bools = []
        # Apply each filter function
        for filter_function in filters:
            filt_bool = filter_function(df, **kwargs)
            filt_bools.append(filt_bool)
            logging.info(
                f"{filter_function.__name__}:\tfiltered {filt_bool.size - np.count_nonzero(filt_bool)}/{filt_bool.size}"
            )

        # Apply all filters
        filt_bool_all = np.prod(np.stack(filt_bools, axis=-1), axis=-1).astype(bool)
        logging.debug(f"filt_bool_all.shape: {filt_bool_all.shape}")  # (windows, channels)

        # Apply morphological smoothing if requested
        if morphological_smoothing_seconds is not None:
            if "duration" not in self.result.columns:
                raise ValueError("Cannot calculate window duration - 'duration' column missing from result dataframe")
            window_duration = self.result["duration"].median()

            # Calculate number of windows for the smoothing
            structure_size = max(1, int(morphological_smoothing_seconds / window_duration))

            if structure_size > 1:
                logging.info(
                    f"Applying morphological smoothing with {structure_size} windows ({morphological_smoothing_seconds}s / {window_duration}s per window)"
                )
                # Apply channel-wise temporal smoothing (each channel processed independently)
                # This avoids spatial assumptions while smoothing temporal artifacts
                for ch_idx in range(filt_bool_all.shape[1]):
                    channel_mask = filt_bool_all[:, ch_idx]
                    # Opening removes small isolated artifacts
                    channel_mask = binary_opening(channel_mask, structure=np.ones(structure_size))
                    # Closing fills small gaps in valid data
                    channel_mask = binary_closing(channel_mask, structure=np.ones(structure_size))
                    filt_bool_all[:, ch_idx] = channel_mask
            else:
                logging.info("Skipping morphological smoothing - structure size would be 1 (no effect)")

        # Filter windows based on number of valid channels
        valid_channels_per_window = np.sum(filt_bool_all, axis=1)  # axis 1 = channel
        window_mask = valid_channels_per_window >= min_valid_channels  # True if window has enough valid channels
        filt_bool_all = filt_bool_all & window_mask[:, np.newaxis]  # Apply window mask to all channels

        filtered_result = self._apply_filter(filt_bool_all)
        if inplace:
            del self.result
            self.result = filtered_result
        return WindowAnalysisResult(
            filtered_result,
            self.animal_id,
            self.genotype,
            self.channel_names,
            self.assume_from_number,
            self.bad_channels_dict.copy(),
            self.suppress_short_interval_error,
            self.lof_scores_dict.copy(),
        )

    def _create_filtered_copy(self, filter_mask: np.ndarray) -> "WindowAnalysisResult":
        """Create a new WindowAnalysisResult with the filter applied.

        Args:
            filter_mask (np.ndarray): Boolean mask of shape (n_windows, n_channels)

        Returns:
            WindowAnalysisResult: New instance with filter applied
        """
        filtered_result = self._apply_filter(filter_mask)
        return WindowAnalysisResult(
            filtered_result,
            self.animal_id,
            self.genotype,
            self.channel_names,
            self.assume_from_number,
            self.bad_channels_dict.copy(),
            self.suppress_short_interval_error,
            self.lof_scores_dict.copy(),
        )

    def filter_logrms_range(self, z_range: float = 3) -> "WindowAnalysisResult":
        """Filter based on log(rms) z-score range.

        Args:
            z_range (float): Z-score range threshold. Defaults to 3.

        Returns:
            WindowAnalysisResult: New filtered instance
        """
        mask = self.get_filter_logrms_range(z_range=z_range)
        return self._create_filtered_copy(mask)

    def filter_high_rms(self, max_rms: float = 500) -> "WindowAnalysisResult":
        """Filter out windows with RMS above threshold.

        Args:
            max_rms (float): Maximum RMS threshold. Defaults to 500.

        Returns:
            WindowAnalysisResult: New filtered instance
        """
        mask = self.get_filter_high_rms(max_rms=max_rms)
        return self._create_filtered_copy(mask)

    def filter_low_rms(self, min_rms: float = 50) -> "WindowAnalysisResult":
        """Filter out windows with RMS below threshold.

        Args:
            min_rms (float): Minimum RMS threshold. Defaults to 50.

        Returns:
            WindowAnalysisResult: New filtered instance
        """
        mask = self.get_filter_low_rms(min_rms=min_rms)
        return self._create_filtered_copy(mask)

    def filter_high_beta(self, max_beta_prop: float = 0.4) -> "WindowAnalysisResult":
        """Filter out windows with high beta power.

        Args:
            max_beta_prop (float): Maximum beta power proportion. Defaults to 0.4.

        Returns:
            WindowAnalysisResult: New filtered instance
        """
        mask = self.get_filter_high_beta(max_beta_prop=max_beta_prop)
        return self._create_filtered_copy(mask)

    def filter_reject_channels(self, bad_channels: list[str], use_abbrevs: bool = None) -> "WindowAnalysisResult":
        """Filter out specified bad channels.

        Args:
            bad_channels (list[str]): List of channel names to reject
            use_abbrevs (bool, optional): Whether to use abbreviations. Defaults to None.

        Returns:
            WindowAnalysisResult: New filtered instance
        """
        mask = self.get_filter_reject_channels(bad_channels=bad_channels, use_abbrevs=use_abbrevs)
        return self._create_filtered_copy(mask)

    def filter_reject_channels_by_session(
        self, bad_channels_dict: dict[str, list[str]] = None, use_abbrevs: bool = None
    ) -> "WindowAnalysisResult":
        """Filter out bad channels by recording session.

        Args:
            bad_channels_dict (dict[str, list[str]], optional): Dictionary mapping recording session
                identifiers to lists of bad channel names to reject. Session identifiers are in the
                format "{animal_id} {genotype} {day}" (e.g., "A10 WT Apr-01-2023"). Channel names
                can be either full names (e.g., "Left Auditory") or abbreviations (e.g., "LAud").
                If None, uses the bad_channels_dict from the constructor. Defaults to None.
            use_abbrevs (bool, optional): Override automatic channel name format detection. If True,
                channels are assumed to be abbreviations. If False, channels are assumed to be full
                names. If None, automatically detects format and converts to abbreviations for matching.
                Defaults to None.

        Returns:
            WindowAnalysisResult: New filtered instance with bad channels masked as NaN for their
                respective recording sessions

        Examples:
            Filter specific channels per session using abbreviations:
            >>> bad_channels = {
            ...     "A10 WT Apr-01-2023": ["LAud", "RMot"],  # Session 1: reject left auditory, right motor
            ...     "A10 WT Apr-02-2023": ["LVis"]           # Session 2: reject left visual only
            ... }
            >>> filtered_war = war.filter_reject_channels_by_session(bad_channels, use_abbrevs=True)

            Filter using full channel names:
            >>> bad_channels = {
            ...     "A12 KO May-15-2023": ["Left Motor", "Right Barrel"],
            ...     "A12 KO May-16-2023": ["Left Auditory", "Left Visual", "Right Motor"]
            ... }
            >>> filtered_war = war.filter_reject_channels_by_session(bad_channels, use_abbrevs=False)

            Auto-detect channel format (recommended):
            >>> bad_channels = {
            ...     "A15 WT Jun-10-2023": ["LMot", "RBar"],  # Will auto-detect as abbreviations
            ...     "A15 WT Jun-11-2023": ["LAud"]
            ... }
            >>> filtered_war = war.filter_reject_channels_by_session(bad_channels)

        Note:
            - Session identifiers must exactly match the "animalday" values in the result DataFrame
            - Available channel abbreviations: LAud, RAud, LVis, RVis, LHip, RHip, LBar, RBar, LMot, RMot
            - Channel names are case-insensitive and support various formats (e.g., "left aud", "Left Auditory")
            - If a session identifier is not found in bad_channels_dict, a warning is logged but processing continues
            - If a channel name is not recognized, a warning is logged but other channels are still processed
        """
        mask = self.get_filter_reject_channels_by_recording_session(
            bad_channels_dict=bad_channels_dict, use_abbrevs=use_abbrevs
        )
        return self._create_filtered_copy(mask)

    def apply_filters(
        self, filter_config: dict = None, min_valid_channels: int = 3, morphological_smoothing_seconds: float = None
    ) -> "WindowAnalysisResult":
        """Apply multiple filters using configuration.

        Args:
            filter_config (dict, optional): Dictionary of filter names and parameters.
                Available filters: 'logrms_range', 'high_rms', 'low_rms', 'high_beta',
                'reject_channels', 'reject_channels_by_session', 'morphological_smoothing'
            min_valid_channels (int): Minimum valid channels per window. Defaults to 3.
            morphological_smoothing_seconds (float, optional): Temporal smoothing window (deprecated, use config instead)

        Returns:
            WindowAnalysisResult: New filtered instance

        Examples:
            >>> config = {
            ...     'logrms_range': {'z_range': 3},
            ...     'high_rms': {'max_rms': 500},
            ...     'reject_channels': {'bad_channels': ['LMot', 'RMot']},
            ...     'morphological_smoothing': {'smoothing_seconds': 8.0}
            ... }
            >>> filtered_war = war.apply_filters(config)
        """
        if filter_config is None:
            filter_config = {
                "logrms_range": {"z_range": 3},
                "high_rms": {"max_rms": 500},
                "low_rms": {"min_rms": 50},
                "high_beta": {"max_beta_prop": 0.4},
                "reject_channels_by_session": {},
            }

        filter_methods = {
            "logrms_range": self.get_filter_logrms_range,
            "high_rms": self.get_filter_high_rms,
            "low_rms": self.get_filter_low_rms,
            "high_beta": self.get_filter_high_beta,
            "reject_channels": self.get_filter_reject_channels,
            "reject_channels_by_session": self.get_filter_reject_channels_by_recording_session,
        }

        filt_bools = []
        morphological_params = None

        for filter_name, filter_params in filter_config.items():
            if filter_name == "morphological_smoothing":
                morphological_params = filter_params
                continue

            if filter_name not in filter_methods:
                raise ValueError(
                    f"Unknown filter: {filter_name}. Available: {list(filter_methods.keys()) + ['morphological_smoothing']}"
                )

            filter_func = filter_methods[filter_name]
            filt_bool = filter_func(**filter_params)
            filt_bools.append(filt_bool)
            logging.info(f"{filter_name}: filtered {filt_bool.size - np.count_nonzero(filt_bool)}/{filt_bool.size}")

        # Combine all filter masks
        if filt_bools:
            filt_bool_all = np.prod(np.stack(filt_bools, axis=-1), axis=-1).astype(bool)
        else:
            filt_bool_all = np.ones((len(self.result), len(self.channel_names)), dtype=bool)

        # Apply morphological smoothing if requested (either from config or parameter)
        if morphological_params or morphological_smoothing_seconds is not None:
            if morphological_params:
                smoothing_seconds = morphological_params["smoothing_seconds"]
            else:
                smoothing_seconds = morphological_smoothing_seconds

            filt_bool_all = self.get_filter_morphological_smoothing(filt_bool_all, smoothing_seconds)
            logging.info(f"Applied morphological smoothing: {smoothing_seconds}s")

        # Filter windows based on minimum valid channels
        valid_channels_per_window = np.sum(filt_bool_all, axis=1)
        window_mask = valid_channels_per_window >= min_valid_channels
        filt_bool_all = filt_bool_all & window_mask[:, np.newaxis]

        return self._create_filtered_copy(filt_bool_all)

    def _apply_filter(self, filter_tfs: np.ndarray):
        result = self.result.copy()
        filter_tfs = np.array(filter_tfs, dtype=bool)  # (M fragments, N channels)
        for feat in constants.FEATURES:
            if feat not in result.columns:
                logging.info(f"Skipping {feat} because it is not in result")
                continue
            logging.info(f"Filtering {feat}")
            match feat:  # NOTE refactor this to use constants
                case "rms" | "ampvar" | "psdtotal" | "nspike" | "logrms" | "logampvar" | "logpsdtotal" | "lognspike":
                    vals = np.array(result[feat].tolist())
                    # Convert to float to allow NaN assignment for integer features
                    if vals.dtype.kind in ("i", "u"):  # integer types
                        vals = vals.astype(float)
                    vals[~filter_tfs] = np.nan
                    result[feat] = vals.tolist()
                case "psd":
                    # FIXME The sampling rates have changed between computation passes so WARs have different shapes.
                    # Add a check for same sampling frequency, other war-relevant properties etc.
                    # The logging lines below should be removed at some point, but I'll keep it this way for now
                    logging.info(
                        f"set([x[0].shape for x in result[feat].tolist()]) = {list(set([x[0].shape for x in result[feat].tolist()]))}"
                    )
                    logging.info(
                        f"set([x[1].shape for x in result[feat].tolist()]) = {list(set([x[1].shape for x in result[feat].tolist()]))}"
                    )
                    coords = np.array([x[0] for x in result[feat].tolist()])
                    vals = np.array([x[1] for x in result[feat].tolist()])
                    mask = np.broadcast_to(filter_tfs[:, np.newaxis, :], vals.shape)
                    vals[~mask] = np.nan
                    outs = [(c, vals[i, :, :]) for i, c in enumerate(coords)]
                    result[feat] = outs
                case "psdband" | "psdfrac" | "logpsdband" | "logpsdfrac":
                    vals = pd.DataFrame(result[feat].tolist())
                    for colname in vals.columns:
                        v = np.array(vals[colname].tolist())
                        v[~filter_tfs] = np.nan
                        vals[colname] = v.tolist()
                    result[feat] = vals.to_dict("records")
                case "psdslope":
                    vals = np.array(result[feat].tolist())
                    mask = np.broadcast_to(filter_tfs[:, :, np.newaxis], vals.shape)
                    vals[~mask] = np.nan
                    # vals = [list(map(tuple, x)) for x in vals.tolist()]
                    result[feat] = vals.tolist()
                case "cohere" | "zcohere" | "imcoh" | "zimcoh":
                    vals = pd.DataFrame(result[feat].tolist())
                    shape = np.array(vals.iloc[:, 0].tolist()).shape
                    mask = np.broadcast_to(filter_tfs[:, :, np.newaxis], shape)
                    for colname in vals.columns:
                        v = np.array(vals[colname].tolist())
                        v[~mask] = np.nan
                        v[~mask.transpose(0, 2, 1)] = np.nan
                        vals[colname] = v.tolist()
                    result[feat] = vals.to_dict("records")
                case "pcorr" | "zpcorr":
                    vals = np.array(result[feat].tolist())
                    mask = np.broadcast_to(filter_tfs[:, :, np.newaxis], vals.shape)
                    vals[~mask] = np.nan
                    vals[~mask.transpose(0, 2, 1)] = np.nan
                    result[feat] = vals.tolist()
                case _:
                    raise ValueError(f"Unknown feature to filter {feat}")
        return result

    def save_pickle_and_json(
        self,
        folder: str | Path,
        make_folder=True,
        filename: str = None,
        slugify_filename=False,
        save_abbrevs_as_chnames=False,
    ):
        """Archive window analysis result into the folder specified, as a pickle and json file.

        Args:
            folder (str | Path): Destination folder to save results to
            make_folder (bool, optional): If True, create the folder if it doesn't exist. Defaults to True.
            filename (str, optional): Name of the file to save. Defaults to "war".
            slugify_filename (bool, optional): If True, slugify the filename (replace special characters). Defaults to False.
            save_abbrevs_as_chnames (bool, optional): If True, save the channel abbreviations as the channel names in the json file. Defaults to False.
        """
        folder = Path(folder)
        if make_folder:
            folder.mkdir(parents=True, exist_ok=True)

        filename = "war" if filename is None else filename
        filename = slugify(filename) if slugify_filename else filename

        filepath = str(folder / filename)

        self.result.to_pickle(filepath + ".pkl")
        logging.info(f"Saved WAR to {filepath + '.pkl'}")

        json_dict = {
            "animal_id": self.animal_id,
            "genotype": self.genotype,
            "channel_names": self.channel_abbrevs if save_abbrevs_as_chnames else self.channel_names,
            "assume_from_number": False if save_abbrevs_as_chnames else self.assume_from_number,
            "bad_channels_dict": self.bad_channels_dict,
            "suppress_short_interval_error": self.suppress_short_interval_error,
            "lof_scores_dict": self.lof_scores_dict.copy(),
        }

        with open(filepath + ".json", "w") as f:
            json.dump(json_dict, f, indent=2)
            logging.info(f"Saved WAR to {filepath + '.json'}")

    def get_bad_channels_by_lof_threshold(self, lof_threshold: float) -> dict:
        """Apply LOF threshold directly to stored scores to get bad channels.

        Args:
            lof_threshold (float): Threshold for determining bad channels.

        Returns:
            dict: Dictionary mapping animal days to lists of bad channel names.
        """
        if not hasattr(self, "lof_scores_dict") or not self.lof_scores_dict:
            raise ValueError("LOF scores not available in this WAR. Compute LOF scores first.")

        bad_channels_dict = {}
        for animalday, lof_data in self.lof_scores_dict.items():
            if "lof_scores" in lof_data and "channel_names" in lof_data:
                scores = np.array(lof_data["lof_scores"])
                channel_names = lof_data["channel_names"]

                is_inlier = scores < lof_threshold
                bad_channels = [channel_names[i] for i in np.where(~is_inlier)[0]]
                bad_channels_dict[animalday] = bad_channels
            else:
                raise ValueError(f"LOF scores not available for {animalday}")

        return bad_channels_dict

    def get_lof_scores(self) -> dict:
        """Get LOF scores from this WAR.

        Returns:
            dict: Dictionary mapping animal days to LOF score dictionaries.
        """
        if not hasattr(self, "lof_scores_dict") or not self.lof_scores_dict:
            raise ValueError("LOF scores not available in this WAR. Compute LOF scores first.")

        result = {}
        for animalday, lof_data in self.lof_scores_dict.items():
            if "lof_scores" in lof_data and "channel_names" in lof_data:
                scores = lof_data["lof_scores"]
                channel_names = lof_data["channel_names"]
                result[animalday] = dict(zip(channel_names, scores))
            else:
                raise ValueError(f"LOF scores not available for {animalday}")

        return result

    def evaluate_lof_threshold_binary(
        self, ground_truth_bad_channels: dict = None, threshold: float = None, evaluation_channels: list[str] = None
    ) -> tuple:
        """Evaluate single threshold against ground truth for binary classification.

        Args:
            ground_truth_bad_channels: Dict mapping animal-day to bad channel sets.
                                     If None, uses self.bad_channels_dict as ground truth.
            threshold: LOF threshold to test
            evaluation_channels: Subset of channels to include in evaluation. If none, uses all channels.

        Returns:
            tuple: (y_true_list, y_pred_list) for sklearn.metrics.f1_score
                   Each element represents one channel from one animal-day
        """
        if not hasattr(self, "lof_scores_dict") or not self.lof_scores_dict:
            raise ValueError("LOF scores not available in this WAR. Run compute_bad_channels() first.")

        if threshold is None:
            raise ValueError("threshold parameter is required")

        # Use self.bad_channels_dict as default ground truth
        if ground_truth_bad_channels is None:
            if hasattr(self, "bad_channels_dict") and self.bad_channels_dict:
                ground_truth_bad_channels = {}

                # Filter bad_channels_dict to only include keys that exist in lof_scores_dict
                lof_keys = set(self.lof_scores_dict.keys())
                bad_channels_keys = set(self.bad_channels_dict.keys())

                missing_keys = bad_channels_keys - lof_keys
                if missing_keys:
                    raise ValueError(
                        f"bad_channels_dict contains keys not found in lof_scores_dict: {missing_keys}. "
                        f"Available LOF keys: {sorted(lof_keys)}"
                    )

                # Only use bad channel keys that have corresponding LOF data
                ground_truth_bad_channels = {
                    key: value for key, value in self.bad_channels_dict.items() if key in lof_keys
                }

                logging.info(
                    f"Using filtered bad_channels_dict as ground truth with {len(ground_truth_bad_channels)} animal-day sessions"
                )
            else:
                raise ValueError("No ground truth provided and self.bad_channels_dict is empty.")

        # Get all channels if no subset specified
        if evaluation_channels is None:
            evaluation_channels = self.channel_names

        y_true_list = []
        y_pred_list = []

        # Debug: Log what we're working with
        logging.debug(f"evaluate_lof_threshold_binary: evaluation_channels = {evaluation_channels}")
        logging.debug(
            f"evaluate_lof_threshold_binary: ground_truth_bad_channels keys = {list(ground_truth_bad_channels.keys())}"
        )
        logging.debug(f"evaluate_lof_threshold_binary: lof_scores_dict keys = {list(self.lof_scores_dict.keys())}")

        # Iterate through each animal-day and evaluate channels
        for animalday, lof_data in self.lof_scores_dict.items():
            if "lof_scores" not in lof_data or "channel_names" not in lof_data:
                raise ValueError(
                    f"Invalid LOF data for {animalday}: missing required fields 'lof_scores' or 'channel_names'"
                )

            scores = np.array(lof_data["lof_scores"])
            channel_names = lof_data["channel_names"]

            # Get ground truth bad channels for this animal-day
            animalday_bad_channels = ground_truth_bad_channels.get(animalday, set())

            # Debug: Log details for this animal-day
            logging.debug(f"Processing {animalday}: channel_names = {channel_names}")
            logging.debug(f"Processing {animalday}: animalday_bad_channels = {animalday_bad_channels}")
            logging.debug(f"Processing {animalday}: scores shape = {scores.shape}")

            # Evaluate each channel in the evaluation subset
            channels_processed = 0
            for i, channel in enumerate(channel_names):
                if (
                    channel in evaluation_channels
                    or parse_chname_to_abbrev(channel, strict_matching=False) in evaluation_channels
                ):
                    channels_processed += 1

                    # Ground truth: 1 if channel is marked as bad, 0 otherwise
                    is_bad_channel = (
                        channel in animalday_bad_channels
                        or parse_chname_to_abbrev(channel, strict_matching=False) in animalday_bad_channels
                    )
                    # if is_bad_channel and channel not in animalday_bad_channels:
                    #     logging.debug(f"Mapped full channel '{channel}' -> '{parse_chname_to_abbrev(channel, strict_matching=False)}' found in bad channels")

                    y_true = 1 if is_bad_channel else 0
                    # Prediction: 1 if LOF score > threshold, 0 otherwise
                    y_pred = 1 if scores[i] > threshold else 0

                    y_true_list.append(y_true)
                    y_pred_list.append(y_pred)

                    logging.debug(
                        f"Channel {channel}: y_true={y_true}, y_pred={y_pred} (score={scores[i]:.3f}, threshold={threshold})"
                    )

                    # Extra debugging for the alignment issue
                    if y_true == 1:
                        logging.info(
                            f"TRUE POSITIVE CANDIDATE: {channel} mapped to bad channel in: {animalday_bad_channels}"
                        )
                    if y_pred == 1:
                        logging.info(f"LOF PREDICTION: {channel} has score {scores[i]:.3f} > threshold {threshold}")

            logging.debug(f"Processed {channels_processed} channels for {animalday}")

        return y_true_list, y_pred_list

    @classmethod
    def load_pickle_and_json(cls, folder_path=None, pickle_name=None, json_name=None):
        """Load WindowAnalysisResult from folder

        Args:
            folder_path (str, optional): Path of folder containing .pkl and .json files. Defaults to None.
            pickle_name (str, optional): Name of the pickle file. Can be just the filename (e.g. "war.pkl")
                or a path relative to folder_path (e.g. "subdir/war.pkl"). If None and folder_path is provided,
                expects exactly one .pkl file in folder_path. Defaults to None.
            json_name (str, optional): Name of the JSON file. Can be just the filename (e.g. "war.json")
                or a path relative to folder_path (e.g. "subdir/war.json"). If None and folder_path is provided,
                expects exactly one .json file in folder_path. Defaults to None.

        Raises:
            ValueError: folder_path does not exist
            ValueError: Expected exactly one pickle and one json file in folder_path (when pickle_name/json_name not specified)
            FileNotFoundError: Specified pickle_name or json_name not found

        Returns:
            result: WindowAnalysisResult object
        """
        if folder_path is not None:
            folder_path = Path(folder_path)
            if not folder_path.exists():
                raise ValueError(f"Folder path {folder_path} does not exist")

            if pickle_name is not None:
                # Handle pickle_name as either absolute path or relative to folder_path
                pickle_path = Path(pickle_name)
                if pickle_path.is_absolute():
                    df_pickle_path = pickle_path
                else:
                    df_pickle_path = folder_path / pickle_name

                if not df_pickle_path.exists():
                    raise FileNotFoundError(f"Pickle file not found: {df_pickle_path}")
            else:
                pkl_files = list(folder_path.glob("*.pkl"))
                if len(pkl_files) != 1:
                    raise ValueError(f"Expected exactly one pickle file in {folder_path}, found {len(pkl_files)}")
                df_pickle_path = pkl_files[0]

            if json_name is not None:
                # Handle json_name as either absolute path or relative to folder_path
                json_path = Path(json_name)
                if json_path.is_absolute():
                    json_path = json_path
                else:
                    json_path = folder_path / json_name

                if not json_path.exists():
                    raise FileNotFoundError(f"JSON file not found: {json_path}")
            else:
                json_files = list(folder_path.glob("*.json"))
                if len(json_files) != 1:
                    raise ValueError(f"Expected exactly one json file in {folder_path}, found {len(json_files)}")
                json_path = json_files[0]
        else:
            if pickle_name is None or json_name is None:
                raise ValueError(
                    "Either folder_path must be provided, or both pickle_name and json_name must be provided as absolute paths"
                )

            df_pickle_path = Path(pickle_name)
            json_path = Path(json_name)

            if not df_pickle_path.exists():
                raise FileNotFoundError(f"Pickle file not found: {df_pickle_path}")
            if not json_path.exists():
                raise FileNotFoundError(f"JSON file not found: {json_path}")

        with open(df_pickle_path, "rb") as f:
            data = pd.read_pickle(f)
        with open(json_path, "r") as f:
            metadata = json.load(f)
        return cls(data, **metadata)

    def aggregate_time_windows(self, groupby: list[str] | str = ["animalday", "isday"]) -> None:
        """Aggregate time windows into a single data point per groupby by averaging features. This reduces the number of rows in the result.

        Args:
            groupby (list[str] | str, optional): Columns to group by. Defaults to ['animalday', 'isday'], which groups by animalday (recording session) and isday (day/night).

        Raises:
            ValueError: groupby must be from ['animalday', 'isday']
            ValueError: Columns in groupby not found in result
            ValueError: Columns in groupby are not constant in groups
        """
        if isinstance(groupby, str):
            groupby = [groupby]
        if not all(col in ["animalday", "isday"] for col in groupby):
            raise ValueError(f"groupby must be from ['animalday', 'isday']. Got {groupby}")
        if not all(col in self.result.columns for col in groupby):
            raise ValueError(f"Columns {groupby} not found in result. Columns: {self.result.columns.tolist()}")

        features = [f for f in constants.FEATURES if f in self.result.columns]
        logging.debug(f"Aggregating {features}")
        result_grouped = self.result.groupby(groupby)

        agg_dict = {}

        if "animalday" not in groupby:
            agg_dict["animalday"] = lambda df: None
        if "isday" not in groupby:
            agg_dict["isday"] = lambda df: None

        constant_cols = ["animal", "day", "genotype"]
        for col in constant_cols:
            if col in self.result.columns:
                is_constant = result_grouped[col].nunique() == 1
                if not is_constant.all():
                    non_constant_groups = is_constant[~is_constant].index.tolist()
                    raise ValueError(f"Column {col} is not constant in groups: {non_constant_groups}")
                agg_dict[col] = lambda df, col=col: df[col].iloc[0]

        if "duration" in self.result.columns:
            agg_dict["duration"] = lambda df: np.sum(df["duration"])

        if "endfile" in self.result.columns:
            agg_dict["endfile"] = lambda df: df["endfile"].iloc[-1]

        if "timestamp" in self.result.columns:
            agg_dict["timestamp"] = lambda df: df["timestamp"].iloc[0]

        for feat in features:
            agg_dict[feat] = lambda df, feat=feat: self._average_feature(df, feat, "duration")

        aggregated_df = result_grouped.apply(
            lambda df: pd.Series({col: agg_dict[col](df) for col in self.result.columns if col not in groupby})
        )

        self.result = aggregated_df.reset_index(drop=False)  # Keep animalday/isday as a column

        self.suppress_short_interval_error = True
        logging.info("Setting suppress_short_interval_error to True")
        self.__update_instance_vars()

    def add_unique_hash(self, nbytes: int | None = None):
        """Adds a hex hash to the animal ID to ensure uniqueness. This prevents collisions when, for example, multiple animals in ExperimentPlotter have the same animal ID.

        Args:
            nbytes (int, optional): Number of bytes to generate. This is passed directly to secrets.token_hex(). Defaults to None, which generates 16 hex characters (8 bytes).
        """
        import secrets

        hash_suffix = secrets.token_hex(nbytes)
        new_animal_id = f"{self.animal_id}_{hash_suffix}"

        if "animal" in self.result.columns:
            self.result["animal"] = new_animal_id
        if "animalday" in self.result.columns:
            self.result["animalday"] = self.result["animalday"].str.replace(self.animal_id, new_animal_id)
        self.animal_id = new_animal_id

        self.__update_instance_vars()

__init__(result, animal_id=None, genotype=None, channel_names=None, assume_from_number=False, bad_channels_dict={}, suppress_short_interval_error=False, lof_scores_dict={})

Parameters:

Name Type Description Default
result DataFrame

Result comes from AnimalOrganizer.compute_windowed_analysis()

required
animal_id str

Identifier for the animal where result was computed from. Defaults to None.

None
genotype str

Genotype of animal. Defaults to None.

None
channel_names list[str]

List of channel names. Defaults to None.

None
assume_channels bool

If true, assumes channel names according to AnimalFeatureParser.DEFAULT_CHNUM_TO_NAME. Defaults to False.

required
bad_channels_dict dict[str, list[str]]

Dictionary of channels to reject for each recording session. Defaults to {}.

{}
suppress_short_interval_error bool

If True, suppress ValueError for short intervals between timestamps. Useful for aggregated WARs with large window sizes. Defaults to False.

False
Source code in pythoneeg/visualization/results.py
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
def __init__(
    self,
    result: pd.DataFrame,
    animal_id: str = None,
    genotype: str = None,
    channel_names: list[str] = None,
    assume_from_number=False,
    bad_channels_dict: dict[str, list[str]] = {},
    suppress_short_interval_error=False,
    lof_scores_dict: dict[str, dict] = {},
) -> None:
    """
    Args:
        result (pd.DataFrame): Result comes from AnimalOrganizer.compute_windowed_analysis()
        animal_id (str, optional): Identifier for the animal where result was computed from. Defaults to None.
        genotype (str, optional): Genotype of animal. Defaults to None.
        channel_names (list[str], optional): List of channel names. Defaults to None.
        assume_channels (bool, optional): If true, assumes channel names according to AnimalFeatureParser.DEFAULT_CHNUM_TO_NAME. Defaults to False.
        bad_channels_dict (dict[str, list[str]], optional): Dictionary of channels to reject for each recording session. Defaults to {}.
        suppress_short_interval_error (bool, optional): If True, suppress ValueError for short intervals between timestamps. Useful for aggregated WARs with large window sizes. Defaults to False.
    """
    self.result = result
    self.animal_id = animal_id
    self.genotype = genotype
    self.channel_names = channel_names
    self.assume_from_number = assume_from_number
    self.bad_channels_dict = bad_channels_dict.copy()
    self.suppress_short_interval_error = suppress_short_interval_error
    self.lof_scores_dict = lof_scores_dict

    self.__update_instance_vars()

    print(f"Channel names: \t{self.channel_names}")
    print(f"Channel abbreviations: \t{self.channel_abbrevs}")

__update_instance_vars()

Run after updating self.result, or other init values

Source code in pythoneeg/visualization/results.py
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
def __update_instance_vars(self):
    """Run after updating self.result, or other init values"""
    if "index" in self.result.columns:
        warnings.warn("Dropping column 'index'")
        self.result = self.result.drop(columns=["index"])

    # Check if timestamps are sorted and sort if needed
    if "timestamp" in self.result.columns:
        if not self.result["timestamp"].is_monotonic_increasing:
            warnings.warn("Timestamps are not sorted. Sorting result DataFrame by timestamp.")
            self.result = self.result.sort_values("timestamp")

    # Check for unusually short intervals between timestamps
    if "timestamp" in self.result.columns and "duration" in self.result.columns:
        median_duration = self.result["duration"].median()
        timestamp_diffs = self.result["timestamp"].diff()
        short_intervals = timestamp_diffs < pd.Timedelta(seconds=median_duration)

        # Skip first row since diff() produces NaT
        short_intervals = short_intervals[1:]

        if short_intervals.any():
            n_short = short_intervals.sum()
            pct_short = (n_short / len(short_intervals)) * 100

            warning_msg = (
                f"Found {n_short} intervals ({pct_short:.1f}%) between timestamps "
                f"that are shorter than the median duration of {median_duration:.1f}s"
            )

            if pct_short > 1.0 and not self.suppress_short_interval_error:  # More than 1% of intervals are short
                raise ValueError(warning_msg)
            elif not self.suppress_short_interval_error:
                warnings.warn(warning_msg)

    if "animal" in self.result.columns:
        unique_animals = self.result["animal"].unique()
        if len(unique_animals) > 1:
            raise ValueError(f"Multiple animals found in result: {unique_animals}")
        if unique_animals[0] != self.animal_id:
            raise ValueError(
                f"Animal ID mismatch: result has {unique_animals[0]}, but self.animal_id is {self.animal_id}"
            )

    self._feature_columns = [x for x in self.result.columns if x in constants.FEATURES]
    self._nonfeature_columns = [x for x in self.result.columns if x not in constants.FEATURES]
    self.animaldays = self.result.loc[:, "animalday"].unique()

    self.channel_abbrevs = [
        core.parse_chname_to_abbrev(x, assume_from_number=self.assume_from_number) for x in self.channel_names
    ]

add_unique_hash(nbytes=None)

Adds a hex hash to the animal ID to ensure uniqueness. This prevents collisions when, for example, multiple animals in ExperimentPlotter have the same animal ID.

Parameters:

Name Type Description Default
nbytes int

Number of bytes to generate. This is passed directly to secrets.token_hex(). Defaults to None, which generates 16 hex characters (8 bytes).

None
Source code in pythoneeg/visualization/results.py
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
def add_unique_hash(self, nbytes: int | None = None):
    """Adds a hex hash to the animal ID to ensure uniqueness. This prevents collisions when, for example, multiple animals in ExperimentPlotter have the same animal ID.

    Args:
        nbytes (int, optional): Number of bytes to generate. This is passed directly to secrets.token_hex(). Defaults to None, which generates 16 hex characters (8 bytes).
    """
    import secrets

    hash_suffix = secrets.token_hex(nbytes)
    new_animal_id = f"{self.animal_id}_{hash_suffix}"

    if "animal" in self.result.columns:
        self.result["animal"] = new_animal_id
    if "animalday" in self.result.columns:
        self.result["animalday"] = self.result["animalday"].str.replace(self.animal_id, new_animal_id)
    self.animal_id = new_animal_id

    self.__update_instance_vars()

aggregate_time_windows(groupby=['animalday', 'isday'])

Aggregate time windows into a single data point per groupby by averaging features. This reduces the number of rows in the result.

Parameters:

Name Type Description Default
groupby list[str] | str

Columns to group by. Defaults to ['animalday', 'isday'], which groups by animalday (recording session) and isday (day/night).

['animalday', 'isday']

Raises:

Type Description
ValueError

groupby must be from ['animalday', 'isday']

ValueError

Columns in groupby not found in result

ValueError

Columns in groupby are not constant in groups

Source code in pythoneeg/visualization/results.py
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
def aggregate_time_windows(self, groupby: list[str] | str = ["animalday", "isday"]) -> None:
    """Aggregate time windows into a single data point per groupby by averaging features. This reduces the number of rows in the result.

    Args:
        groupby (list[str] | str, optional): Columns to group by. Defaults to ['animalday', 'isday'], which groups by animalday (recording session) and isday (day/night).

    Raises:
        ValueError: groupby must be from ['animalday', 'isday']
        ValueError: Columns in groupby not found in result
        ValueError: Columns in groupby are not constant in groups
    """
    if isinstance(groupby, str):
        groupby = [groupby]
    if not all(col in ["animalday", "isday"] for col in groupby):
        raise ValueError(f"groupby must be from ['animalday', 'isday']. Got {groupby}")
    if not all(col in self.result.columns for col in groupby):
        raise ValueError(f"Columns {groupby} not found in result. Columns: {self.result.columns.tolist()}")

    features = [f for f in constants.FEATURES if f in self.result.columns]
    logging.debug(f"Aggregating {features}")
    result_grouped = self.result.groupby(groupby)

    agg_dict = {}

    if "animalday" not in groupby:
        agg_dict["animalday"] = lambda df: None
    if "isday" not in groupby:
        agg_dict["isday"] = lambda df: None

    constant_cols = ["animal", "day", "genotype"]
    for col in constant_cols:
        if col in self.result.columns:
            is_constant = result_grouped[col].nunique() == 1
            if not is_constant.all():
                non_constant_groups = is_constant[~is_constant].index.tolist()
                raise ValueError(f"Column {col} is not constant in groups: {non_constant_groups}")
            agg_dict[col] = lambda df, col=col: df[col].iloc[0]

    if "duration" in self.result.columns:
        agg_dict["duration"] = lambda df: np.sum(df["duration"])

    if "endfile" in self.result.columns:
        agg_dict["endfile"] = lambda df: df["endfile"].iloc[-1]

    if "timestamp" in self.result.columns:
        agg_dict["timestamp"] = lambda df: df["timestamp"].iloc[0]

    for feat in features:
        agg_dict[feat] = lambda df, feat=feat: self._average_feature(df, feat, "duration")

    aggregated_df = result_grouped.apply(
        lambda df: pd.Series({col: agg_dict[col](df) for col in self.result.columns if col not in groupby})
    )

    self.result = aggregated_df.reset_index(drop=False)  # Keep animalday/isday as a column

    self.suppress_short_interval_error = True
    logging.info("Setting suppress_short_interval_error to True")
    self.__update_instance_vars()

apply_filters(filter_config=None, min_valid_channels=3, morphological_smoothing_seconds=None)

Apply multiple filters using configuration.

Parameters:

Name Type Description Default
filter_config dict

Dictionary of filter names and parameters. Available filters: 'logrms_range', 'high_rms', 'low_rms', 'high_beta', 'reject_channels', 'reject_channels_by_session', 'morphological_smoothing'

None
min_valid_channels int

Minimum valid channels per window. Defaults to 3.

3
morphological_smoothing_seconds float

Temporal smoothing window (deprecated, use config instead)

None

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance

Examples:

>>> config = {
...     'logrms_range': {'z_range': 3},
...     'high_rms': {'max_rms': 500},
...     'reject_channels': {'bad_channels': ['LMot', 'RMot']},
...     'morphological_smoothing': {'smoothing_seconds': 8.0}
... }
>>> filtered_war = war.apply_filters(config)
Source code in pythoneeg/visualization/results.py
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
def apply_filters(
    self, filter_config: dict = None, min_valid_channels: int = 3, morphological_smoothing_seconds: float = None
) -> "WindowAnalysisResult":
    """Apply multiple filters using configuration.

    Args:
        filter_config (dict, optional): Dictionary of filter names and parameters.
            Available filters: 'logrms_range', 'high_rms', 'low_rms', 'high_beta',
            'reject_channels', 'reject_channels_by_session', 'morphological_smoothing'
        min_valid_channels (int): Minimum valid channels per window. Defaults to 3.
        morphological_smoothing_seconds (float, optional): Temporal smoothing window (deprecated, use config instead)

    Returns:
        WindowAnalysisResult: New filtered instance

    Examples:
        >>> config = {
        ...     'logrms_range': {'z_range': 3},
        ...     'high_rms': {'max_rms': 500},
        ...     'reject_channels': {'bad_channels': ['LMot', 'RMot']},
        ...     'morphological_smoothing': {'smoothing_seconds': 8.0}
        ... }
        >>> filtered_war = war.apply_filters(config)
    """
    if filter_config is None:
        filter_config = {
            "logrms_range": {"z_range": 3},
            "high_rms": {"max_rms": 500},
            "low_rms": {"min_rms": 50},
            "high_beta": {"max_beta_prop": 0.4},
            "reject_channels_by_session": {},
        }

    filter_methods = {
        "logrms_range": self.get_filter_logrms_range,
        "high_rms": self.get_filter_high_rms,
        "low_rms": self.get_filter_low_rms,
        "high_beta": self.get_filter_high_beta,
        "reject_channels": self.get_filter_reject_channels,
        "reject_channels_by_session": self.get_filter_reject_channels_by_recording_session,
    }

    filt_bools = []
    morphological_params = None

    for filter_name, filter_params in filter_config.items():
        if filter_name == "morphological_smoothing":
            morphological_params = filter_params
            continue

        if filter_name not in filter_methods:
            raise ValueError(
                f"Unknown filter: {filter_name}. Available: {list(filter_methods.keys()) + ['morphological_smoothing']}"
            )

        filter_func = filter_methods[filter_name]
        filt_bool = filter_func(**filter_params)
        filt_bools.append(filt_bool)
        logging.info(f"{filter_name}: filtered {filt_bool.size - np.count_nonzero(filt_bool)}/{filt_bool.size}")

    # Combine all filter masks
    if filt_bools:
        filt_bool_all = np.prod(np.stack(filt_bools, axis=-1), axis=-1).astype(bool)
    else:
        filt_bool_all = np.ones((len(self.result), len(self.channel_names)), dtype=bool)

    # Apply morphological smoothing if requested (either from config or parameter)
    if morphological_params or morphological_smoothing_seconds is not None:
        if morphological_params:
            smoothing_seconds = morphological_params["smoothing_seconds"]
        else:
            smoothing_seconds = morphological_smoothing_seconds

        filt_bool_all = self.get_filter_morphological_smoothing(filt_bool_all, smoothing_seconds)
        logging.info(f"Applied morphological smoothing: {smoothing_seconds}s")

    # Filter windows based on minimum valid channels
    valid_channels_per_window = np.sum(filt_bool_all, axis=1)
    window_mask = valid_channels_per_window >= min_valid_channels
    filt_bool_all = filt_bool_all & window_mask[:, np.newaxis]

    return self._create_filtered_copy(filt_bool_all)

evaluate_lof_threshold_binary(ground_truth_bad_channels=None, threshold=None, evaluation_channels=None)

Evaluate single threshold against ground truth for binary classification.

Parameters:

Name Type Description Default
ground_truth_bad_channels dict

Dict mapping animal-day to bad channel sets. If None, uses self.bad_channels_dict as ground truth.

None
threshold float

LOF threshold to test

None
evaluation_channels list[str]

Subset of channels to include in evaluation. If none, uses all channels.

None

Returns:

Name Type Description
tuple tuple

(y_true_list, y_pred_list) for sklearn.metrics.f1_score Each element represents one channel from one animal-day

Source code in pythoneeg/visualization/results.py
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
def evaluate_lof_threshold_binary(
    self, ground_truth_bad_channels: dict = None, threshold: float = None, evaluation_channels: list[str] = None
) -> tuple:
    """Evaluate single threshold against ground truth for binary classification.

    Args:
        ground_truth_bad_channels: Dict mapping animal-day to bad channel sets.
                                 If None, uses self.bad_channels_dict as ground truth.
        threshold: LOF threshold to test
        evaluation_channels: Subset of channels to include in evaluation. If none, uses all channels.

    Returns:
        tuple: (y_true_list, y_pred_list) for sklearn.metrics.f1_score
               Each element represents one channel from one animal-day
    """
    if not hasattr(self, "lof_scores_dict") or not self.lof_scores_dict:
        raise ValueError("LOF scores not available in this WAR. Run compute_bad_channels() first.")

    if threshold is None:
        raise ValueError("threshold parameter is required")

    # Use self.bad_channels_dict as default ground truth
    if ground_truth_bad_channels is None:
        if hasattr(self, "bad_channels_dict") and self.bad_channels_dict:
            ground_truth_bad_channels = {}

            # Filter bad_channels_dict to only include keys that exist in lof_scores_dict
            lof_keys = set(self.lof_scores_dict.keys())
            bad_channels_keys = set(self.bad_channels_dict.keys())

            missing_keys = bad_channels_keys - lof_keys
            if missing_keys:
                raise ValueError(
                    f"bad_channels_dict contains keys not found in lof_scores_dict: {missing_keys}. "
                    f"Available LOF keys: {sorted(lof_keys)}"
                )

            # Only use bad channel keys that have corresponding LOF data
            ground_truth_bad_channels = {
                key: value for key, value in self.bad_channels_dict.items() if key in lof_keys
            }

            logging.info(
                f"Using filtered bad_channels_dict as ground truth with {len(ground_truth_bad_channels)} animal-day sessions"
            )
        else:
            raise ValueError("No ground truth provided and self.bad_channels_dict is empty.")

    # Get all channels if no subset specified
    if evaluation_channels is None:
        evaluation_channels = self.channel_names

    y_true_list = []
    y_pred_list = []

    # Debug: Log what we're working with
    logging.debug(f"evaluate_lof_threshold_binary: evaluation_channels = {evaluation_channels}")
    logging.debug(
        f"evaluate_lof_threshold_binary: ground_truth_bad_channels keys = {list(ground_truth_bad_channels.keys())}"
    )
    logging.debug(f"evaluate_lof_threshold_binary: lof_scores_dict keys = {list(self.lof_scores_dict.keys())}")

    # Iterate through each animal-day and evaluate channels
    for animalday, lof_data in self.lof_scores_dict.items():
        if "lof_scores" not in lof_data or "channel_names" not in lof_data:
            raise ValueError(
                f"Invalid LOF data for {animalday}: missing required fields 'lof_scores' or 'channel_names'"
            )

        scores = np.array(lof_data["lof_scores"])
        channel_names = lof_data["channel_names"]

        # Get ground truth bad channels for this animal-day
        animalday_bad_channels = ground_truth_bad_channels.get(animalday, set())

        # Debug: Log details for this animal-day
        logging.debug(f"Processing {animalday}: channel_names = {channel_names}")
        logging.debug(f"Processing {animalday}: animalday_bad_channels = {animalday_bad_channels}")
        logging.debug(f"Processing {animalday}: scores shape = {scores.shape}")

        # Evaluate each channel in the evaluation subset
        channels_processed = 0
        for i, channel in enumerate(channel_names):
            if (
                channel in evaluation_channels
                or parse_chname_to_abbrev(channel, strict_matching=False) in evaluation_channels
            ):
                channels_processed += 1

                # Ground truth: 1 if channel is marked as bad, 0 otherwise
                is_bad_channel = (
                    channel in animalday_bad_channels
                    or parse_chname_to_abbrev(channel, strict_matching=False) in animalday_bad_channels
                )
                # if is_bad_channel and channel not in animalday_bad_channels:
                #     logging.debug(f"Mapped full channel '{channel}' -> '{parse_chname_to_abbrev(channel, strict_matching=False)}' found in bad channels")

                y_true = 1 if is_bad_channel else 0
                # Prediction: 1 if LOF score > threshold, 0 otherwise
                y_pred = 1 if scores[i] > threshold else 0

                y_true_list.append(y_true)
                y_pred_list.append(y_pred)

                logging.debug(
                    f"Channel {channel}: y_true={y_true}, y_pred={y_pred} (score={scores[i]:.3f}, threshold={threshold})"
                )

                # Extra debugging for the alignment issue
                if y_true == 1:
                    logging.info(
                        f"TRUE POSITIVE CANDIDATE: {channel} mapped to bad channel in: {animalday_bad_channels}"
                    )
                if y_pred == 1:
                    logging.info(f"LOF PREDICTION: {channel} has score {scores[i]:.3f} > threshold {threshold}")

        logging.debug(f"Processed {channels_processed} channels for {animalday}")

    return y_true_list, y_pred_list

filter_all(df=None, inplace=True, min_valid_channels=3, filters=None, morphological_smoothing_seconds=None, **kwargs)

Apply a list of filters to the data. Filtering should be performed before aggregation.

Parameters:

Name Type Description Default
df DataFrame

If not None, this function will use this dataframe instead of self.result. Defaults to None.

None
inplace bool

If True, modify the result in place. Defaults to True.

True
bad_channels list[str]

List of channels to reject. Defaults to None.

required
min_valid_channels int

Minimum number of valid channels required per window. Defaults to 3.

3
filters list[callable]

List of filter functions to apply. Each function should return a boolean mask. If None, uses default filters: [get_filter_logrms_range, get_filter_high_rms, get_filter_low_rms, get_filter_high_beta]. Defaults to None.

None
morphological_smoothing_seconds float

If provided, apply morphological opening/closing to smooth the filter mask. This removes isolated false positives/negatives along the time axis for each channel independently. The value specifies the time window in seconds for the morphological operations. Defaults to None.

None
save_bad_channels Literal['overwrite', 'union', None]

How to save bad channels to self.bad_channels_dict. This parameter is passed to the filtering functions. Defaults to "union". Note: When using "overwrite" mode, the bad_channels parameter and bad_channels_dict parameter may conflict and overwrite each other's bad channel definitions if both are provided.

required
**kwargs

Additional keyword arguments to pass to filter functions.

{}

Returns:

Name Type Description
WindowAnalysisResult

Filtered result

Source code in pythoneeg/visualization/results.py
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
def filter_all(
    self,
    df: pd.DataFrame = None,
    inplace=True,
    # bad_channels: list[str] = None,
    min_valid_channels=3,
    filters: list[callable] = None,
    morphological_smoothing_seconds: float = None,
    # save_bad_channels: Literal["overwrite", "union", None] = "union",
    **kwargs,
):
    """Apply a list of filters to the data. Filtering should be performed before aggregation.

    Args:
        df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
        inplace (bool, optional): If True, modify the result in place. Defaults to True.
        bad_channels (list[str], optional): List of channels to reject. Defaults to None.
        min_valid_channels (int, optional): Minimum number of valid channels required per window. Defaults to 3.
        filters (list[callable], optional): List of filter functions to apply. Each function should return a boolean mask.
            If None, uses default filters: [get_filter_logrms_range, get_filter_high_rms, get_filter_low_rms, get_filter_high_beta].
            Defaults to None.
        morphological_smoothing_seconds (float, optional): If provided, apply morphological opening/closing to smooth the filter mask.
            This removes isolated false positives/negatives along the time axis for each channel independently.
            The value specifies the time window in seconds for the morphological operations. Defaults to None.
        save_bad_channels (Literal["overwrite", "union", None], optional): How to save bad channels to self.bad_channels_dict.
            This parameter is passed to the filtering functions. Defaults to "union".
            Note: When using "overwrite" mode, the bad_channels parameter and bad_channels_dict parameter
            may conflict and overwrite each other's bad channel definitions if both are provided.
        **kwargs: Additional keyword arguments to pass to filter functions.

    Returns:
        WindowAnalysisResult: Filtered result
    """
    if filters is None:
        # TODO refactor these into standalone functions, which take in a war as the first parameter, then pass
        # filt_bool = filt(self, df, **kwargs) as needed
        filters = [
            self.get_filter_logrms_range,
            self.get_filter_high_rms,
            self.get_filter_low_rms,
            self.get_filter_high_beta,
            self.get_filter_reject_channels_by_recording_session,
            self.get_filter_reject_channels,
        ]

    filt_bools = []
    # Apply each filter function
    for filter_function in filters:
        filt_bool = filter_function(df, **kwargs)
        filt_bools.append(filt_bool)
        logging.info(
            f"{filter_function.__name__}:\tfiltered {filt_bool.size - np.count_nonzero(filt_bool)}/{filt_bool.size}"
        )

    # Apply all filters
    filt_bool_all = np.prod(np.stack(filt_bools, axis=-1), axis=-1).astype(bool)
    logging.debug(f"filt_bool_all.shape: {filt_bool_all.shape}")  # (windows, channels)

    # Apply morphological smoothing if requested
    if morphological_smoothing_seconds is not None:
        if "duration" not in self.result.columns:
            raise ValueError("Cannot calculate window duration - 'duration' column missing from result dataframe")
        window_duration = self.result["duration"].median()

        # Calculate number of windows for the smoothing
        structure_size = max(1, int(morphological_smoothing_seconds / window_duration))

        if structure_size > 1:
            logging.info(
                f"Applying morphological smoothing with {structure_size} windows ({morphological_smoothing_seconds}s / {window_duration}s per window)"
            )
            # Apply channel-wise temporal smoothing (each channel processed independently)
            # This avoids spatial assumptions while smoothing temporal artifacts
            for ch_idx in range(filt_bool_all.shape[1]):
                channel_mask = filt_bool_all[:, ch_idx]
                # Opening removes small isolated artifacts
                channel_mask = binary_opening(channel_mask, structure=np.ones(structure_size))
                # Closing fills small gaps in valid data
                channel_mask = binary_closing(channel_mask, structure=np.ones(structure_size))
                filt_bool_all[:, ch_idx] = channel_mask
        else:
            logging.info("Skipping morphological smoothing - structure size would be 1 (no effect)")

    # Filter windows based on number of valid channels
    valid_channels_per_window = np.sum(filt_bool_all, axis=1)  # axis 1 = channel
    window_mask = valid_channels_per_window >= min_valid_channels  # True if window has enough valid channels
    filt_bool_all = filt_bool_all & window_mask[:, np.newaxis]  # Apply window mask to all channels

    filtered_result = self._apply_filter(filt_bool_all)
    if inplace:
        del self.result
        self.result = filtered_result
    return WindowAnalysisResult(
        filtered_result,
        self.animal_id,
        self.genotype,
        self.channel_names,
        self.assume_from_number,
        self.bad_channels_dict.copy(),
        self.suppress_short_interval_error,
        self.lof_scores_dict.copy(),
    )

filter_high_beta(max_beta_prop=0.4)

Filter out windows with high beta power.

Parameters:

Name Type Description Default
max_beta_prop float

Maximum beta power proportion. Defaults to 0.4.

0.4

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance

Source code in pythoneeg/visualization/results.py
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
def filter_high_beta(self, max_beta_prop: float = 0.4) -> "WindowAnalysisResult":
    """Filter out windows with high beta power.

    Args:
        max_beta_prop (float): Maximum beta power proportion. Defaults to 0.4.

    Returns:
        WindowAnalysisResult: New filtered instance
    """
    mask = self.get_filter_high_beta(max_beta_prop=max_beta_prop)
    return self._create_filtered_copy(mask)

filter_high_rms(max_rms=500)

Filter out windows with RMS above threshold.

Parameters:

Name Type Description Default
max_rms float

Maximum RMS threshold. Defaults to 500.

500

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance

Source code in pythoneeg/visualization/results.py
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
def filter_high_rms(self, max_rms: float = 500) -> "WindowAnalysisResult":
    """Filter out windows with RMS above threshold.

    Args:
        max_rms (float): Maximum RMS threshold. Defaults to 500.

    Returns:
        WindowAnalysisResult: New filtered instance
    """
    mask = self.get_filter_high_rms(max_rms=max_rms)
    return self._create_filtered_copy(mask)

filter_logrms_range(z_range=3)

Filter based on log(rms) z-score range.

Parameters:

Name Type Description Default
z_range float

Z-score range threshold. Defaults to 3.

3

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance

Source code in pythoneeg/visualization/results.py
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
def filter_logrms_range(self, z_range: float = 3) -> "WindowAnalysisResult":
    """Filter based on log(rms) z-score range.

    Args:
        z_range (float): Z-score range threshold. Defaults to 3.

    Returns:
        WindowAnalysisResult: New filtered instance
    """
    mask = self.get_filter_logrms_range(z_range=z_range)
    return self._create_filtered_copy(mask)

filter_low_rms(min_rms=50)

Filter out windows with RMS below threshold.

Parameters:

Name Type Description Default
min_rms float

Minimum RMS threshold. Defaults to 50.

50

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance

Source code in pythoneeg/visualization/results.py
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
def filter_low_rms(self, min_rms: float = 50) -> "WindowAnalysisResult":
    """Filter out windows with RMS below threshold.

    Args:
        min_rms (float): Minimum RMS threshold. Defaults to 50.

    Returns:
        WindowAnalysisResult: New filtered instance
    """
    mask = self.get_filter_low_rms(min_rms=min_rms)
    return self._create_filtered_copy(mask)

filter_morphological_smoothing(smoothing_seconds)

Apply morphological smoothing to all data.

Parameters:

Name Type Description Default
smoothing_seconds float

Time window in seconds for morphological operations

required

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance

Source code in pythoneeg/visualization/results.py
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
def filter_morphological_smoothing(self, smoothing_seconds: float) -> "WindowAnalysisResult":
    """Apply morphological smoothing to all data.

    Args:
        smoothing_seconds (float): Time window in seconds for morphological operations

    Returns:
        WindowAnalysisResult: New filtered instance
    """
    # Start with all-True mask and smooth it
    base_mask = np.ones((len(self.result), len(self.channel_names)), dtype=bool)
    smoothed_mask = self.get_filter_morphological_smoothing(base_mask, smoothing_seconds)
    return self._create_filtered_copy(smoothed_mask)

filter_reject_channels(bad_channels, use_abbrevs=None)

Filter out specified bad channels.

Parameters:

Name Type Description Default
bad_channels list[str]

List of channel names to reject

required
use_abbrevs bool

Whether to use abbreviations. Defaults to None.

None

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance

Source code in pythoneeg/visualization/results.py
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
def filter_reject_channels(self, bad_channels: list[str], use_abbrevs: bool = None) -> "WindowAnalysisResult":
    """Filter out specified bad channels.

    Args:
        bad_channels (list[str]): List of channel names to reject
        use_abbrevs (bool, optional): Whether to use abbreviations. Defaults to None.

    Returns:
        WindowAnalysisResult: New filtered instance
    """
    mask = self.get_filter_reject_channels(bad_channels=bad_channels, use_abbrevs=use_abbrevs)
    return self._create_filtered_copy(mask)

filter_reject_channels_by_session(bad_channels_dict=None, use_abbrevs=None)

Filter out bad channels by recording session.

Parameters:

Name Type Description Default
bad_channels_dict dict[str, list[str]]

Dictionary mapping recording session identifiers to lists of bad channel names to reject. Session identifiers are in the format "{animal_id} {genotype} {day}" (e.g., "A10 WT Apr-01-2023"). Channel names can be either full names (e.g., "Left Auditory") or abbreviations (e.g., "LAud"). If None, uses the bad_channels_dict from the constructor. Defaults to None.

None
use_abbrevs bool

Override automatic channel name format detection. If True, channels are assumed to be abbreviations. If False, channels are assumed to be full names. If None, automatically detects format and converts to abbreviations for matching. Defaults to None.

None

Returns:

Name Type Description
WindowAnalysisResult WindowAnalysisResult

New filtered instance with bad channels masked as NaN for their respective recording sessions

Examples:

Filter specific channels per session using abbreviations:

>>> bad_channels = {
...     "A10 WT Apr-01-2023": ["LAud", "RMot"],  # Session 1: reject left auditory, right motor
...     "A10 WT Apr-02-2023": ["LVis"]           # Session 2: reject left visual only
... }
>>> filtered_war = war.filter_reject_channels_by_session(bad_channels, use_abbrevs=True)

Filter using full channel names:

>>> bad_channels = {
...     "A12 KO May-15-2023": ["Left Motor", "Right Barrel"],
...     "A12 KO May-16-2023": ["Left Auditory", "Left Visual", "Right Motor"]
... }
>>> filtered_war = war.filter_reject_channels_by_session(bad_channels, use_abbrevs=False)

Auto-detect channel format (recommended):

>>> bad_channels = {
...     "A15 WT Jun-10-2023": ["LMot", "RBar"],  # Will auto-detect as abbreviations
...     "A15 WT Jun-11-2023": ["LAud"]
... }
>>> filtered_war = war.filter_reject_channels_by_session(bad_channels)
Note
  • Session identifiers must exactly match the "animalday" values in the result DataFrame
  • Available channel abbreviations: LAud, RAud, LVis, RVis, LHip, RHip, LBar, RBar, LMot, RMot
  • Channel names are case-insensitive and support various formats (e.g., "left aud", "Left Auditory")
  • If a session identifier is not found in bad_channels_dict, a warning is logged but processing continues
  • If a channel name is not recognized, a warning is logged but other channels are still processed
Source code in pythoneeg/visualization/results.py
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
def filter_reject_channels_by_session(
    self, bad_channels_dict: dict[str, list[str]] = None, use_abbrevs: bool = None
) -> "WindowAnalysisResult":
    """Filter out bad channels by recording session.

    Args:
        bad_channels_dict (dict[str, list[str]], optional): Dictionary mapping recording session
            identifiers to lists of bad channel names to reject. Session identifiers are in the
            format "{animal_id} {genotype} {day}" (e.g., "A10 WT Apr-01-2023"). Channel names
            can be either full names (e.g., "Left Auditory") or abbreviations (e.g., "LAud").
            If None, uses the bad_channels_dict from the constructor. Defaults to None.
        use_abbrevs (bool, optional): Override automatic channel name format detection. If True,
            channels are assumed to be abbreviations. If False, channels are assumed to be full
            names. If None, automatically detects format and converts to abbreviations for matching.
            Defaults to None.

    Returns:
        WindowAnalysisResult: New filtered instance with bad channels masked as NaN for their
            respective recording sessions

    Examples:
        Filter specific channels per session using abbreviations:
        >>> bad_channels = {
        ...     "A10 WT Apr-01-2023": ["LAud", "RMot"],  # Session 1: reject left auditory, right motor
        ...     "A10 WT Apr-02-2023": ["LVis"]           # Session 2: reject left visual only
        ... }
        >>> filtered_war = war.filter_reject_channels_by_session(bad_channels, use_abbrevs=True)

        Filter using full channel names:
        >>> bad_channels = {
        ...     "A12 KO May-15-2023": ["Left Motor", "Right Barrel"],
        ...     "A12 KO May-16-2023": ["Left Auditory", "Left Visual", "Right Motor"]
        ... }
        >>> filtered_war = war.filter_reject_channels_by_session(bad_channels, use_abbrevs=False)

        Auto-detect channel format (recommended):
        >>> bad_channels = {
        ...     "A15 WT Jun-10-2023": ["LMot", "RBar"],  # Will auto-detect as abbreviations
        ...     "A15 WT Jun-11-2023": ["LAud"]
        ... }
        >>> filtered_war = war.filter_reject_channels_by_session(bad_channels)

    Note:
        - Session identifiers must exactly match the "animalday" values in the result DataFrame
        - Available channel abbreviations: LAud, RAud, LVis, RVis, LHip, RHip, LBar, RBar, LMot, RMot
        - Channel names are case-insensitive and support various formats (e.g., "left aud", "Left Auditory")
        - If a session identifier is not found in bad_channels_dict, a warning is logged but processing continues
        - If a channel name is not recognized, a warning is logged but other channels are still processed
    """
    mask = self.get_filter_reject_channels_by_recording_session(
        bad_channels_dict=bad_channels_dict, use_abbrevs=use_abbrevs
    )
    return self._create_filtered_copy(mask)

get_bad_channels_by_lof_threshold(lof_threshold)

Apply LOF threshold directly to stored scores to get bad channels.

Parameters:

Name Type Description Default
lof_threshold float

Threshold for determining bad channels.

required

Returns:

Name Type Description
dict dict

Dictionary mapping animal days to lists of bad channel names.

Source code in pythoneeg/visualization/results.py
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
def get_bad_channels_by_lof_threshold(self, lof_threshold: float) -> dict:
    """Apply LOF threshold directly to stored scores to get bad channels.

    Args:
        lof_threshold (float): Threshold for determining bad channels.

    Returns:
        dict: Dictionary mapping animal days to lists of bad channel names.
    """
    if not hasattr(self, "lof_scores_dict") or not self.lof_scores_dict:
        raise ValueError("LOF scores not available in this WAR. Compute LOF scores first.")

    bad_channels_dict = {}
    for animalday, lof_data in self.lof_scores_dict.items():
        if "lof_scores" in lof_data and "channel_names" in lof_data:
            scores = np.array(lof_data["lof_scores"])
            channel_names = lof_data["channel_names"]

            is_inlier = scores < lof_threshold
            bad_channels = [channel_names[i] for i in np.where(~is_inlier)[0]]
            bad_channels_dict[animalday] = bad_channels
        else:
            raise ValueError(f"LOF scores not available for {animalday}")

    return bad_channels_dict

get_filter_high_beta(df=None, max_beta_prop=0.4, **kwargs)

Filter windows based on beta power.

Parameters:

Name Type Description Default
df DataFrame

If not None, this function will use this dataframe instead of self.result. Defaults to None.

None
max_beta_prop float

The maximum beta power to filter by. Values above this will be set to NaN. Defaults to 0.4.

0.4

Returns:

Name Type Description
out

np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window

Source code in pythoneeg/visualization/results.py
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
def get_filter_high_beta(self, df: pd.DataFrame = None, max_beta_prop=0.4, **kwargs):
    """Filter windows based on beta power.

    Args:
        df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
        max_beta_prop (float, optional): The maximum beta power to filter by. Values above this will be set to NaN. Defaults to 0.4.

    Returns:
        out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
    """
    result = df.copy() if df is not None else self.result.copy()
    if "psdfrac" in result.columns:
        df_psdfrac = pd.DataFrame(result["psdfrac"].tolist())
        np_prop = np.array(df_psdfrac["beta"].tolist())
    elif "psdband" in result.columns and "psdtotal" in result.columns:
        df_psdband = pd.DataFrame(result["psdband"].tolist())
        np_beta = np.array(df_psdband["beta"].tolist())
        np_total = np.array(result["psdtotal"].tolist())
        np_prop = np_beta / np_total
    else:
        raise ValueError("psdfrac or psdband+psdtotal required for beta power filtering")

    out = np.full(np_prop.shape, True)
    out[np_prop > max_beta_prop] = False
    out = np.broadcast_to(np.all(out, axis=-1)[:, np.newaxis], out.shape)
    return out

get_filter_high_rms(df=None, max_rms=500, **kwargs)

Filter windows based on rms.

Parameters:

Name Type Description Default
df DataFrame

If not None, this function will use this dataframe instead of self.result. Defaults to None.

None
max_rms float

The maximum rms value to filter by. Values above this will be set to NaN.

500

Returns:

Name Type Description
out

np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window

Source code in pythoneeg/visualization/results.py
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
def get_filter_high_rms(self, df: pd.DataFrame = None, max_rms=500, **kwargs):
    """Filter windows based on rms.

    Args:
        df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
        max_rms (float, optional): The maximum rms value to filter by. Values above this will be set to NaN.

    Returns:
        out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
    """
    result = df.copy() if df is not None else self.result.copy()
    np_rms = np.array(result["rms"].tolist())
    np_rmsnan = np_rms.copy()
    # Convert to float to allow NaN assignment for integer arrays
    if np_rmsnan.dtype.kind in ("i", "u"):  # integer types
        np_rmsnan = np_rmsnan.astype(float)
    np_rmsnan[np_rms > max_rms] = np.nan
    result["rms"] = np_rmsnan.tolist()

    out = np.full(np_rms.shape, True)
    out[np_rms > max_rms] = False
    return out

get_filter_logrms_range(df=None, z_range=3, **kwargs)

Filter windows based on log(rms).

Parameters:

Name Type Description Default
df DataFrame

If not None, this function will use this dataframe instead of self.result. Defaults to None.

None
z_range float

The z-score range to filter by. Values outside this range will be set to NaN.

3

Returns:

Name Type Description
out

np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window

Source code in pythoneeg/visualization/results.py
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
def get_filter_logrms_range(self, df: pd.DataFrame = None, z_range=3, **kwargs):
    """Filter windows based on log(rms).

    Args:
        df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
        z_range (float, optional): The z-score range to filter by. Values outside this range will be set to NaN.

    Returns:
        out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
    """
    result = df.copy() if df is not None else self.result.copy()
    z_range = abs(z_range)
    np_rms = np.array(result["rms"].tolist())
    np_logrms = np.log(np_rms)
    del np_rms
    np_logrmsz = zscore(np_logrms, axis=0, nan_policy="omit")
    np_logrms[(np_logrmsz > z_range) | (np_logrmsz < -z_range)] = np.nan

    out = np.full(np_logrms.shape, True)
    out[(np_logrmsz > z_range) | (np_logrmsz < -z_range)] = False
    return out

get_filter_low_rms(df=None, min_rms=30, **kwargs)

Filter windows based on rms.

Parameters:

Name Type Description Default
df DataFrame

If not None, this function will use this dataframe instead of self.result. Defaults to None.

None
min_rms float

The minimum rms value to filter by. Values below this will be set to NaN.

30

Returns:

Name Type Description
out

np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window

Source code in pythoneeg/visualization/results.py
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
def get_filter_low_rms(self, df: pd.DataFrame = None, min_rms=30, **kwargs):
    """Filter windows based on rms.

    Args:
        df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
        min_rms (float, optional): The minimum rms value to filter by. Values below this will be set to NaN.

    Returns:
        out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
    """
    result = df.copy() if df is not None else self.result.copy()
    np_rms = np.array(result["rms"].tolist())
    np_rmsnan = np_rms.copy()
    np_rmsnan[np_rms < min_rms] = np.nan
    result["rms"] = np_rmsnan.tolist()

    out = np.full(np_rms.shape, True)
    out[np_rms < min_rms] = False
    return out

get_filter_morphological_smoothing(filter_mask, smoothing_seconds, **kwargs)

Apply morphological smoothing to a filter mask.

Parameters:

Name Type Description Default
filter_mask ndarray

Input boolean mask of shape (n_windows, n_channels)

required
smoothing_seconds float

Time window in seconds for morphological operations

required

Returns:

Type Description
ndarray

np.ndarray: Smoothed boolean mask

Source code in pythoneeg/visualization/results.py
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
def get_filter_morphological_smoothing(
    self, filter_mask: np.ndarray, smoothing_seconds: float, **kwargs
) -> np.ndarray:
    """Apply morphological smoothing to a filter mask.

    Args:
        filter_mask (np.ndarray): Input boolean mask of shape (n_windows, n_channels)
        smoothing_seconds (float): Time window in seconds for morphological operations

    Returns:
        np.ndarray: Smoothed boolean mask
    """
    if "duration" not in self.result.columns:
        raise ValueError("Cannot calculate window duration - 'duration' column missing")

    window_duration = self.result["duration"].median()
    structure_size = max(1, int(smoothing_seconds / window_duration))

    if structure_size <= 1:
        return filter_mask

    smoothed_mask = filter_mask.copy()
    for ch_idx in range(filter_mask.shape[1]):
        channel_mask = filter_mask[:, ch_idx]
        # Opening removes small isolated artifacts
        channel_mask = binary_opening(channel_mask, structure=np.ones(structure_size))
        # Closing fills small gaps in valid data
        channel_mask = binary_closing(channel_mask, structure=np.ones(structure_size))
        smoothed_mask[:, ch_idx] = channel_mask

    return smoothed_mask

get_filter_reject_channels(df=None, bad_channels=None, use_abbrevs=None, save_bad_channels='union', **kwargs)

Filter channels to reject.

Parameters:

Name Type Description Default
df DataFrame

If not None, this function will use this dataframe instead of self.result. Defaults to None.

None
bad_channels list[str]

List of channels to reject. Can be either full channel names or abbreviations. The method will automatically detect which format is being used. If None, no filtering is performed.

None
use_abbrevs bool

Override automatic detection. If True, channels are assumed to be channel abbreviations. If False, channels are assumed to be channel names. If None, channels are parsed to abbreviations and matched against self.channel_abbrevs.

None
save_bad_channels Literal['overwrite', 'union', None]

How to save bad channels to self.bad_channels_dict. "overwrite": Replace self.bad_channels_dict completely with bad channels applied to all sessions. "union": Merge bad channels with existing self.bad_channels_dict for all sessions. None: Don't save to self.bad_channels_dict. Defaults to "union". Note: When using "overwrite" mode, the bad_channels parameter and bad_channels_dict parameter may conflict and overwrite each other's bad channel definitions if both are provided.

'union'

Returns:

Name Type Description
out

np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window

Source code in pythoneeg/visualization/results.py
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
def get_filter_reject_channels(
    self,
    df: pd.DataFrame = None,
    bad_channels: list[str] = None,
    use_abbrevs: bool = None,
    save_bad_channels: Literal["overwrite", "union", None] = "union",
    **kwargs,
):
    """Filter channels to reject.

    Args:
        df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
        bad_channels (list[str]): List of channels to reject. Can be either full channel names or abbreviations.
            The method will automatically detect which format is being used. If None, no filtering is performed.
        use_abbrevs (bool, optional): Override automatic detection. If True, channels are assumed to be channel abbreviations. If False, channels are assumed to be channel names.
            If None, channels are parsed to abbreviations and matched against self.channel_abbrevs.
        save_bad_channels (Literal["overwrite", "union", None], optional): How to save bad channels to self.bad_channels_dict.
            "overwrite": Replace self.bad_channels_dict completely with bad channels applied to all sessions.
            "union": Merge bad channels with existing self.bad_channels_dict for all sessions.
            None: Don't save to self.bad_channels_dict. Defaults to "union".
            Note: When using "overwrite" mode, the bad_channels parameter and bad_channels_dict parameter
            may conflict and overwrite each other's bad channel definitions if both are provided.

    Returns:
        out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
    """
    n_samples = len(self.result)
    n_channels = len(self.channel_names)
    mask = np.ones((n_samples, n_channels), dtype=bool)

    if bad_channels is None:
        return mask

    channel_targets = (
        self.channel_abbrevs if use_abbrevs or use_abbrevs is None else self.channel_names
    )  # Match to appropriate target
    if use_abbrevs is None:  # Match channels as abbreviations
        bad_channels = [
            core.parse_chname_to_abbrev(ch, assume_from_number=self.assume_from_number) for ch in bad_channels
        ]

    # Match channels to channel_targets
    for ch in bad_channels:
        if ch in channel_targets:
            mask[:, channel_targets.index(ch)] = False
        else:
            warnings.warn(f"Channel {ch} not found in {channel_targets}")

    # Save bad channels to self.bad_channels_dict if requested
    if save_bad_channels is not None:
        # Get all unique animal days from the result
        animaldays = self.result["animalday"].unique()

        # Convert bad channels to the format used in bad_channels_dict (original channel names)
        channels_to_save = (
            bad_channels.copy()
            if use_abbrevs is False
            else [
                core.parse_chname_to_abbrev(ch, assume_from_number=self.assume_from_number) for ch in bad_channels
            ]
        )

        if save_bad_channels == "overwrite":
            # Replace entire dict with bad channels applied to all sessions
            self.bad_channels_dict = {animalday: channels_to_save.copy() for animalday in animaldays}
        elif save_bad_channels == "union":
            # Merge with existing bad channels for all sessions
            updated_dict = self.bad_channels_dict.copy()
            for animalday in animaldays:
                if animalday in updated_dict:
                    # Union of existing and new channels
                    updated_dict[animalday] = list(set(updated_dict[animalday]) | set(channels_to_save))
                else:
                    updated_dict[animalday] = channels_to_save.copy()
            self.bad_channels_dict = updated_dict

    return mask

get_filter_reject_channels_by_recording_session(df=None, bad_channels_dict=None, use_abbrevs=None, save_bad_channels='union', **kwargs)

Filter channels to reject for each recording session

Parameters:

Name Type Description Default
df DataFrame

If not None, this function will use this dataframe instead of self.result. Defaults to None.

None
bad_channels_dict dict[str, list[str]]

Dictionary of list of channels to reject for each recording session. Can be either full channel names or abbreviations. The method will automatically detect which format is being used. If None, the method will use the bad_channels_dict passed to the constructor.

None
use_abbrevs bool

Override automatic detection. If True, channels are assumed to be channel abbreviations. If False, channels are assumed to be channel names. If None, channels are parsed to abbreviations and matched against self.channel_abbrevs.

None
save_bad_channels Literal['overwrite', 'union', None]

How to save bad channels to self.bad_channels_dict. "overwrite": Replace self.bad_channels_dict completely with bad_channels_dict. "union": Merge bad_channels_dict with existing self.bad_channels_dict per session. None: Don't save to self.bad_channels_dict. Defaults to "union". Note: When using "overwrite" mode, the bad_channels parameter and bad_channels_dict parameter may conflict and overwrite each other's bad channel definitions if both are provided.

'union'

Returns:

Name Type Description
out

np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window

Source code in pythoneeg/visualization/results.py
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
def get_filter_reject_channels_by_recording_session(
    self,
    df: pd.DataFrame = None,
    bad_channels_dict: dict[str, list[str]] = None,
    use_abbrevs: bool = None,
    save_bad_channels: Literal["overwrite", "union", None] = "union",
    **kwargs,
):
    """Filter channels to reject for each recording session

    Args:
        df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
        bad_channels_dict (dict[str, list[str]]): Dictionary of list of channels to reject for each recording session.
            Can be either full channel names or abbreviations. The method will automatically detect which format is being used.
            If None, the method will use the bad_channels_dict passed to the constructor.
        use_abbrevs (bool, optional): Override automatic detection. If True, channels are assumed to be channel abbreviations. If False, channels are assumed to be channel names.
            If None, channels are parsed to abbreviations and matched against self.channel_abbrevs.
        save_bad_channels (Literal["overwrite", "union", None], optional): How to save bad channels to self.bad_channels_dict.
            "overwrite": Replace self.bad_channels_dict completely with bad_channels_dict.
            "union": Merge bad_channels_dict with existing self.bad_channels_dict per session.
            None: Don't save to self.bad_channels_dict. Defaults to "union".
            Note: When using "overwrite" mode, the bad_channels parameter and bad_channels_dict parameter
            may conflict and overwrite each other's bad channel definitions if both are provided.

    Returns:
        out: np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window
    """
    if bad_channels_dict is None:
        bad_channels_dict = self.bad_channels_dict.copy()

    n_samples = len(self.result)
    n_channels = len(self.channel_names)
    mask = np.ones((n_samples, n_channels), dtype=bool)

    # Group by animalday to apply filters per recording session
    for animalday, group in self.result.groupby("animalday"):
        if bad_channels_dict:
            if animalday not in bad_channels_dict:
                raise ValueError(
                    f"No bad channels specified for recording session {animalday}. Check that all days are present in bad_channels_dict"
                )
            bad_channels = bad_channels_dict[animalday]
        else:
            bad_channels = []

        channel_targets = self.channel_abbrevs if use_abbrevs or use_abbrevs is None else self.channel_names
        if use_abbrevs is None:
            bad_channels = [
                core.parse_chname_to_abbrev(ch, assume_from_number=self.assume_from_number) for ch in bad_channels
            ]

        # Get indices for this recording session
        session_indices = group.index

        # Apply channel filtering for this session
        for ch in bad_channels:
            if ch in channel_targets:
                ch_idx = channel_targets.index(ch)
                mask[session_indices, ch_idx] = False
            else:
                logging.warning(f"Channel {ch} not found in {channel_targets} for session {animalday}")

    # Save bad channels to self.bad_channels_dict if requested
    if save_bad_channels is not None and bad_channels_dict is not None:
        if save_bad_channels == "overwrite":
            self.bad_channels_dict = bad_channels_dict.copy()
        elif save_bad_channels == "union":
            # Merge with existing bad channels per session
            updated_dict = self.bad_channels_dict.copy()
            for animalday, channels in bad_channels_dict.items():
                if animalday in updated_dict:
                    # Union of existing and new channels
                    updated_dict[animalday] = list(set(updated_dict[animalday]) | set(channels))
                else:
                    updated_dict[animalday] = channels.copy()
            self.bad_channels_dict = updated_dict

    return mask

get_groupavg_result(features, exclude=[], df=None, groupby='animalday')

Group result and average within groups. Preserves data structure and shape for each feature.

Parameters:

Name Type Description Default
features list[str]

List of features to get from result

required
exclude list[str]

List of features to exclude from result. Will override the features parameter. Defaults to [].

[]
df DataFrame

If not None, this function will use this dataframe instead of self.result. Defaults to None.

None
groupby str

Feature or list of features to group by before averaging. Passed to the by parameter in pd.DataFrame.groupby(). Defaults to "animalday".

'animalday'

Returns:

Name Type Description
grouped_result

result grouped by groupby and averaged for each group.

Source code in pythoneeg/visualization/results.py
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
def get_groupavg_result(
    self, features: list[str], exclude: list[str] = [], df: pd.DataFrame = None, groupby="animalday"
):
    """Group result and average within groups. Preserves data structure and shape for each feature.

    Args:
        features (list[str]): List of features to get from result
        exclude (list[str], optional): List of features to exclude from result. Will override the features parameter. Defaults to [].
        df (pd.DataFrame, optional): If not None, this function will use this dataframe instead of self.result. Defaults to None.
        groupby (str, optional): Feature or list of features to group by before averaging. Passed to the `by` parameter in pd.DataFrame.groupby(). Defaults to "animalday".

    Returns:
        grouped_result: result grouped by `groupby` and averaged for each group.
    """
    result_grouped, result_validcols = self.__get_groups(features=features, exclude=exclude, df=df, groupby=groupby)
    features = _sanitize_feature_request(features, exclude)

    avg_results = []
    for f in features:
        if f in result_validcols:
            avg_result_col = result_grouped.apply(self._average_feature, f, "duration", include_groups=False)
            avg_result_col.name = f
            avg_results.append(avg_result_col)
        else:
            logging.warning(f"{f} not calculated, skipping")

    return pd.concat(avg_results, axis=1)

get_info()

Returns a formatted string with basic information about the WindowAnalysisResult object

Source code in pythoneeg/visualization/results.py
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
def get_info(self):
    """Returns a formatted string with basic information about the WindowAnalysisResult object"""
    info = []
    info.append(f"feature names: {', '.join(self._feature_columns)}")
    info.append(f"animaldays: {', '.join(self.result['animalday'].unique())}")
    info.append(
        f"animal_id: {self.result['animal'].unique()[0] if 'animal' in self.result.columns else self.animal_id}"
    )
    info.append(
        f"genotype: {self.result['genotype'].unique()[0] if 'genotype' in self.result.columns else self.genotype}"
    )
    info.append(f"channel_names: {', '.join(self.channel_names) if self.channel_names else 'None'}")

    return "\n".join(info)

get_lof_scores()

Get LOF scores from this WAR.

Returns:

Name Type Description
dict dict

Dictionary mapping animal days to LOF score dictionaries.

Source code in pythoneeg/visualization/results.py
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
def get_lof_scores(self) -> dict:
    """Get LOF scores from this WAR.

    Returns:
        dict: Dictionary mapping animal days to LOF score dictionaries.
    """
    if not hasattr(self, "lof_scores_dict") or not self.lof_scores_dict:
        raise ValueError("LOF scores not available in this WAR. Compute LOF scores first.")

    result = {}
    for animalday, lof_data in self.lof_scores_dict.items():
        if "lof_scores" in lof_data and "channel_names" in lof_data:
            scores = lof_data["lof_scores"]
            channel_names = lof_data["channel_names"]
            result[animalday] = dict(zip(channel_names, scores))
        else:
            raise ValueError(f"LOF scores not available for {animalday}")

    return result

get_result(features, exclude=[], allow_missing=False)

Get windowed analysis result dataframe, with helpful filters

Parameters:

Name Type Description Default
features list[str]

List of features to get from result

required
exclude list[str]

List of features to exclude from result; will override the features parameter. Defaults to [].

[]
allow_missing bool

If True, will return all requested features as columns regardless if they exist in result. Defaults to False.

False

Returns:

Name Type Description
result

pd.DataFrame object with features in columns and windows in rows

Source code in pythoneeg/visualization/results.py
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
def get_result(self, features: list[str], exclude: list[str] = [], allow_missing=False):
    """Get windowed analysis result dataframe, with helpful filters

    Args:
        features (list[str]): List of features to get from result
        exclude (list[str], optional): List of features to exclude from result; will override the features parameter. Defaults to [].
        allow_missing (bool, optional): If True, will return all requested features as columns regardless if they exist in result. Defaults to False.

    Returns:
        result: pd.DataFrame object with features in columns and windows in rows
    """
    features = _sanitize_feature_request(features, exclude)
    if not allow_missing:
        return self.result.loc[:, self._nonfeature_columns + features]
    else:
        return self.result.reindex(columns=self._nonfeature_columns + features)

load_pickle_and_json(folder_path=None, pickle_name=None, json_name=None) classmethod

Load WindowAnalysisResult from folder

Parameters:

Name Type Description Default
folder_path str

Path of folder containing .pkl and .json files. Defaults to None.

None
pickle_name str

Name of the pickle file. Can be just the filename (e.g. "war.pkl") or a path relative to folder_path (e.g. "subdir/war.pkl"). If None and folder_path is provided, expects exactly one .pkl file in folder_path. Defaults to None.

None
json_name str

Name of the JSON file. Can be just the filename (e.g. "war.json") or a path relative to folder_path (e.g. "subdir/war.json"). If None and folder_path is provided, expects exactly one .json file in folder_path. Defaults to None.

None

Raises:

Type Description
ValueError

folder_path does not exist

ValueError

Expected exactly one pickle and one json file in folder_path (when pickle_name/json_name not specified)

FileNotFoundError

Specified pickle_name or json_name not found

Returns:

Name Type Description
result

WindowAnalysisResult object

Source code in pythoneeg/visualization/results.py
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
@classmethod
def load_pickle_and_json(cls, folder_path=None, pickle_name=None, json_name=None):
    """Load WindowAnalysisResult from folder

    Args:
        folder_path (str, optional): Path of folder containing .pkl and .json files. Defaults to None.
        pickle_name (str, optional): Name of the pickle file. Can be just the filename (e.g. "war.pkl")
            or a path relative to folder_path (e.g. "subdir/war.pkl"). If None and folder_path is provided,
            expects exactly one .pkl file in folder_path. Defaults to None.
        json_name (str, optional): Name of the JSON file. Can be just the filename (e.g. "war.json")
            or a path relative to folder_path (e.g. "subdir/war.json"). If None and folder_path is provided,
            expects exactly one .json file in folder_path. Defaults to None.

    Raises:
        ValueError: folder_path does not exist
        ValueError: Expected exactly one pickle and one json file in folder_path (when pickle_name/json_name not specified)
        FileNotFoundError: Specified pickle_name or json_name not found

    Returns:
        result: WindowAnalysisResult object
    """
    if folder_path is not None:
        folder_path = Path(folder_path)
        if not folder_path.exists():
            raise ValueError(f"Folder path {folder_path} does not exist")

        if pickle_name is not None:
            # Handle pickle_name as either absolute path or relative to folder_path
            pickle_path = Path(pickle_name)
            if pickle_path.is_absolute():
                df_pickle_path = pickle_path
            else:
                df_pickle_path = folder_path / pickle_name

            if not df_pickle_path.exists():
                raise FileNotFoundError(f"Pickle file not found: {df_pickle_path}")
        else:
            pkl_files = list(folder_path.glob("*.pkl"))
            if len(pkl_files) != 1:
                raise ValueError(f"Expected exactly one pickle file in {folder_path}, found {len(pkl_files)}")
            df_pickle_path = pkl_files[0]

        if json_name is not None:
            # Handle json_name as either absolute path or relative to folder_path
            json_path = Path(json_name)
            if json_path.is_absolute():
                json_path = json_path
            else:
                json_path = folder_path / json_name

            if not json_path.exists():
                raise FileNotFoundError(f"JSON file not found: {json_path}")
        else:
            json_files = list(folder_path.glob("*.json"))
            if len(json_files) != 1:
                raise ValueError(f"Expected exactly one json file in {folder_path}, found {len(json_files)}")
            json_path = json_files[0]
    else:
        if pickle_name is None or json_name is None:
            raise ValueError(
                "Either folder_path must be provided, or both pickle_name and json_name must be provided as absolute paths"
            )

        df_pickle_path = Path(pickle_name)
        json_path = Path(json_name)

        if not df_pickle_path.exists():
            raise FileNotFoundError(f"Pickle file not found: {df_pickle_path}")
        if not json_path.exists():
            raise FileNotFoundError(f"JSON file not found: {json_path}")

    with open(df_pickle_path, "rb") as f:
        data = pd.read_pickle(f)
    with open(json_path, "r") as f:
        metadata = json.load(f)
    return cls(data, **metadata)

reorder_and_pad_channels(target_channels, use_abbrevs=True, inplace=True)

Reorder and pad channels to match a target channel list.

This method ensures that the data has a consistent channel order and structure by reordering existing channels and padding missing channels with NaNs.

Parameters:

Name Type Description Default
target_channels list[str]

List of target channel names to match

required
use_abbrevs bool

If True, target channel names are read as channel abbreviations instead of channel names. Defaults to True.

True
inplace bool

If True, modify the result in place. Defaults to True.

True

Returns: pd.DataFrame: DataFrame with reordered and padded channels

Source code in pythoneeg/visualization/results.py
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
def reorder_and_pad_channels(
    self, target_channels: list[str], use_abbrevs: bool = True, inplace: bool = True
) -> pd.DataFrame:
    """Reorder and pad channels to match a target channel list.

    This method ensures that the data has a consistent channel order and structure
    by reordering existing channels and padding missing channels with NaNs.

    Args:
        target_channels (list[str]): List of target channel names to match
        use_abbrevs (bool, optional): If True, target channel names are read as channel abbreviations instead of channel names. Defaults to True.
        inplace (bool, optional): If True, modify the result in place. Defaults to True.
    Returns:
        pd.DataFrame: DataFrame with reordered and padded channels
    """
    duplicates = [ch for ch in target_channels if target_channels.count(ch) > 1]
    if duplicates:
        raise ValueError(f"Target channels must be unique. Found duplicates: {duplicates}")

    result = self.result.copy()

    channel_map = {ch: i for i, ch in enumerate(target_channels)}
    channel_names = self.channel_names if not use_abbrevs else self.channel_abbrevs

    valid_channels = [ch for ch in channel_names if ch in channel_map]
    if not valid_channels:
        warnings.warn(
            f"None of the channel names {channel_names} were found in target channels {target_channels}. Is use_abbrevs correctly set?"
        )

    for feature in self._feature_columns:
        match feature:
            case _ if feature in constants.LINEAR_FEATURES + constants.BAND_FEATURES:
                if feature in constants.BAND_FEATURES:
                    df_bands = pd.DataFrame(result[feature].tolist())
                    vals = np.array(df_bands.values.tolist())
                    vals = vals.transpose((0, 2, 1))
                    keys = df_bands.keys()
                else:
                    vals = np.array(result[feature].tolist())

                new_vals = np.full((vals.shape[0], len(target_channels), *vals.shape[2:]), np.nan)  # dubious

                for i, ch in enumerate(channel_names):
                    if ch in channel_map:
                        new_vals[:, channel_map[ch]] = vals[:, i]

                if feature in constants.BAND_FEATURES:
                    new_vals = new_vals.transpose((0, 2, 1))
                    result[feature] = [dict(zip(keys, vals)) for vals in new_vals]
                else:
                    result[feature] = [list(x) for x in new_vals]

            case _ if feature in constants.MATRIX_FEATURES:
                if feature in ["cohere", "zcohere", "imcoh", "zimcoh"]:
                    df_bands = pd.DataFrame(result[feature].tolist())
                    vals = np.array(df_bands.values.tolist())
                    keys = df_bands.keys()
                else:
                    vals = np.array(result[feature].tolist())

                logging.debug(f"vals.shape: {vals.shape}")
                new_shape = list(vals.shape[:-2]) + [len(target_channels), len(target_channels)]
                new_vals = np.full(new_shape, np.nan)

                # Map original channels to target channels
                for i, ch1 in enumerate(channel_names):
                    if ch1 in channel_map:
                        for j, ch2 in enumerate(channel_names):
                            if ch2 in channel_map:
                                new_vals[..., channel_map[ch1], channel_map[ch2]] = vals[..., i, j]

                if feature in ["cohere", "zcohere", "imcoh", "zimcoh"]:
                    result[feature] = [dict(zip(keys, vals)) for vals in new_vals]
                else:
                    result[feature] = [list(x) for x in new_vals]

            case _ if feature in constants.HIST_FEATURES:
                coords = np.array([x[0] for x in result[feature].tolist()])
                vals = np.array([x[1] for x in result[feature].tolist()])
                new_vals = np.full((*vals.shape[0:-1], len(target_channels)), np.nan)

                for i, ch in enumerate(channel_names):
                    if ch in channel_map:
                        new_vals[:, ..., channel_map[ch]] = vals[:, ..., i]

                result[feature] = [(coords[i], new_vals[i]) for i in range(len(coords))]

            case _:
                raise ValueError(f"Invalid feature: {feature}")

    if inplace:
        self.result = result

        logging.debug(f"Old channel names: {self.channel_names}")
        self.channel_names = target_channels
        logging.debug(f"New channel names: {self.channel_names}")

        logging.debug(f"Old channel abbreviations: {self.channel_abbrevs}")
        self.__update_instance_vars()
        logging.debug(f"New channel abbreviations: {self.channel_abbrevs}")

    return result

save_pickle_and_json(folder, make_folder=True, filename=None, slugify_filename=False, save_abbrevs_as_chnames=False)

Archive window analysis result into the folder specified, as a pickle and json file.

Parameters:

Name Type Description Default
folder str | Path

Destination folder to save results to

required
make_folder bool

If True, create the folder if it doesn't exist. Defaults to True.

True
filename str

Name of the file to save. Defaults to "war".

None
slugify_filename bool

If True, slugify the filename (replace special characters). Defaults to False.

False
save_abbrevs_as_chnames bool

If True, save the channel abbreviations as the channel names in the json file. Defaults to False.

False
Source code in pythoneeg/visualization/results.py
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
def save_pickle_and_json(
    self,
    folder: str | Path,
    make_folder=True,
    filename: str = None,
    slugify_filename=False,
    save_abbrevs_as_chnames=False,
):
    """Archive window analysis result into the folder specified, as a pickle and json file.

    Args:
        folder (str | Path): Destination folder to save results to
        make_folder (bool, optional): If True, create the folder if it doesn't exist. Defaults to True.
        filename (str, optional): Name of the file to save. Defaults to "war".
        slugify_filename (bool, optional): If True, slugify the filename (replace special characters). Defaults to False.
        save_abbrevs_as_chnames (bool, optional): If True, save the channel abbreviations as the channel names in the json file. Defaults to False.
    """
    folder = Path(folder)
    if make_folder:
        folder.mkdir(parents=True, exist_ok=True)

    filename = "war" if filename is None else filename
    filename = slugify(filename) if slugify_filename else filename

    filepath = str(folder / filename)

    self.result.to_pickle(filepath + ".pkl")
    logging.info(f"Saved WAR to {filepath + '.pkl'}")

    json_dict = {
        "animal_id": self.animal_id,
        "genotype": self.genotype,
        "channel_names": self.channel_abbrevs if save_abbrevs_as_chnames else self.channel_names,
        "assume_from_number": False if save_abbrevs_as_chnames else self.assume_from_number,
        "bad_channels_dict": self.bad_channels_dict,
        "suppress_short_interval_error": self.suppress_short_interval_error,
        "lof_scores_dict": self.lof_scores_dict.copy(),
    }

    with open(filepath + ".json", "w") as f:
        json.dump(json_dict, f, indent=2)
        logging.info(f"Saved WAR to {filepath + '.json'}")

bin_spike_times(spike_times, fragment_durations)

Bin spike times into counts based on fragment durations.

Parameters:

Name Type Description Default
spike_times list[float]

List of spike timestamps in seconds

required
fragment_durations list[float]

List of fragment durations in seconds

required

Returns:

Type Description
list[int]

list[int]: List of spike counts per fragment

Source code in pythoneeg/visualization/results.py
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
def bin_spike_times(spike_times: list[float], fragment_durations: list[float]) -> list[int]:
    """Bin spike times into counts based on fragment durations.

    Args:
        spike_times (list[float]): List of spike timestamps in seconds
        fragment_durations (list[float]): List of fragment durations in seconds

    Returns:
        list[int]: List of spike counts per fragment
    """
    # Convert fragment durations to bin edges
    bin_edges = np.cumsum([0] + fragment_durations)

    # Use numpy's histogram function to count spikes in each bin
    counts, _ = np.histogram(spike_times, bins=bin_edges)

    return counts.tolist()