Results
AnimalOrganizer
Bases: AnimalFeatureParser
Source code in pythoneeg/visualization/results.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 |
|
__init__(base_folder_path, anim_id, day_sep=None, mode='concat', assume_from_number=False, skip_days=[], truncate=False, lro_kwargs={})
AnimalOrganizer is used to organize data from a single animal into a format that can be used for analysis. It is used to organize data from a single animal into a format that can be used for analysis.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
base_folder_path
|
str
|
The path to the base folder of the animal data. |
required |
anim_id
|
str
|
The ID of the animal. This should correspond to only one animal. |
required |
day_sep
|
str
|
Separator for day in folder name. Set to None or empty string to get all folders. Defaults to None. |
None
|
mode
|
Literal['nest', 'concat', 'base', 'noday']
|
The mode of the AnimalOrganizer. Defaults to "concat". File structure patterns (where * indicates search location): "nest": base_folder_path / animal_id / date_format (looks for folders/files within animal_id subdirectories) "concat": base_folder_path / animal_iddate_format (looks for folders/files with animal_id+date in name at base level) "base": base_folder_path / * (looks for folders/files directly in base_folder_path) "noday": base_folder_path / animal_id* (same as concat but expects single unique match, no date filtering) |
'concat'
|
assume_from_number
|
bool
|
Whether to assume the animal ID is a number. Defaults to False. |
False
|
skip_days
|
list[str]
|
The days to skip. Defaults to []. |
[]
|
truncate
|
bool | int
|
Whether to truncate the data. Defaults to False. |
False
|
lro_kwargs
|
dict
|
Keyword arguments for LongRecordingOrganizer. Defaults to {}. |
{}
|
Source code in pythoneeg/visualization/results.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
|
apply_lof_threshold(lof_threshold)
Apply threshold to existing LOF scores to determine bad channels for all recordings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lof_threshold
|
float
|
Threshold for determining bad channels. |
required |
Source code in pythoneeg/visualization/results.py
745 746 747 748 749 750 751 752 753 754 755 756 |
|
compute_bad_channels(lof_threshold=None, force_recompute=False)
Compute bad channels using LOF analysis for all recordings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lof_threshold
|
float
|
Threshold for determining bad channels from LOF scores. If None, only computes/loads scores without setting bad_channel_names. |
None
|
force_recompute
|
bool
|
Whether to recompute LOF scores even if they exist. |
False
|
Source code in pythoneeg/visualization/results.py
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
|
compute_spike_analysis(multiprocess_mode='serial')
Compute spike sorting on all long recordings and return a list of SpikeAnalysisResult objects
Parameters:
Name | Type | Description | Default |
---|---|---|---|
multiprocess_mode
|
Literal['dask', 'serial']
|
Whether to use Dask for parallel processing. Defaults to 'serial'. |
'serial'
|
Returns:
Name | Type | Description |
---|---|---|
spike_analysis_results |
list[SpikeAnalysisResult]. Each SpikeAnalysisResult object corresponds to a LongRecording object, |
|
typically a different day or recording session. |
Raises:
Type | Description |
---|---|
ImportError
|
If mountainsort5 is not available. |
Source code in pythoneeg/visualization/results.py
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 |
|
compute_windowed_analysis(features, exclude=[], window_s=4, multiprocess_mode='serial', suppress_short_interval_error=False, apply_notch_filter=True, **kwargs)
Computes windowed analysis of animal recordings. The data is divided into windows (time bins), then features are extracted from each window. The result is formatted to a Dataframe and wrapped into a WindowAnalysisResult object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
list[str]
|
List of features to compute. See individual compute_...() functions for output format |
required |
exclude
|
list[str]
|
List of features to ignore. Will override the features parameter. Defaults to []. |
[]
|
window_s
|
int
|
Length of each window in seconds. Note that some features break with very short window times. Defaults to 4. |
4
|
suppress_short_interval_error
|
bool
|
If True, suppress ValueError for short intervals between timestamps in resulting WindowAnalysisResult. Useful for aggregated WARs. Defaults to False. |
False
|
apply_notch_filter
|
bool
|
Whether to apply notch filtering to remove line noise. Uses constants.LINE_FREQ. Defaults to True. |
True
|
Raises:
Type | Description |
---|---|
AttributeError
|
If a feature's compute_...() function was not implemented, this error will be raised. |
Returns:
Name | Type | Description |
---|---|---|
window_analysis_result |
a WindowAnalysisResult object |
Source code in pythoneeg/visualization/results.py
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 |
|
get_all_lof_scores()
Get LOF scores for all recordings.
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
Dictionary mapping animal days to LOF score dictionaries. |
Source code in pythoneeg/visualization/results.py
758 759 760 761 762 763 764 |
|
get_timeline_summary()
Get timeline summary as a DataFrame for user inspection and debugging.
Returns:
Type | Description |
---|---|
DataFrame
|
pd.DataFrame: Timeline information with columns: - lro_index: Index of the LRO - start_time: Start datetime of the LRO - end_time: End datetime of the LRO - duration_s: Duration in seconds - n_files: Number of files in the LRO - folder_path: Base folder path - animalday: Parsed animalday identifier |
Source code in pythoneeg/visualization/results.py
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
|
SpikeAnalysisResult
Bases: AnimalFeatureParser
Source code in pythoneeg/visualization/results.py
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 |
|
__init__(result_sas, result_mne=None, animal_id=None, genotype=None, animal_day=None, bin_folder_name=None, metadata=None, channel_names=None, assume_from_number=False)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
result
|
list[SortingAnalyzer]
|
Result comes from AnimalOrganizer.compute_spike_analysis(). Each SortingAnalyzer is a single channel. |
required |
animal_id
|
str
|
Identifier for the animal where result was computed from. Defaults to None. |
None
|
genotype
|
str
|
Genotype of animal. Defaults to None. |
None
|
channel_names
|
list[str]
|
List of channel names. Defaults to None. |
None
|
assume_channels
|
bool
|
If true, assumes channel names according to AnimalFeatureParser.DEFAULT_CHNUM_TO_NAME. Defaults to False. |
required |
Source code in pythoneeg/visualization/results.py
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 |
|
convert_sa_to_np(sa, chunk_len=60)
staticmethod
Convert a SortingAnalyzer to an MNE RawArray.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sa
|
SortingAnalyzer
|
The SortingAnalyzer to convert. Must have only 1 channel. |
required |
chunk_len
|
float
|
The length of the chunks to use for the conversion. Defaults to 60. |
60
|
Returns: np.ndarray: The converted traces
Source code in pythoneeg/visualization/results.py
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 |
|
convert_sas_to_mne(sas, chunk_len=60)
staticmethod
Convert a list of SortingAnalyzers to a MNE RawArray.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sas
|
list[SortingAnalyzer]
|
The list of SortingAnalyzers to convert |
required |
chunk_len
|
float
|
The length of the chunks to use for the conversion. Defaults to 60. |
60
|
Returns:
Type | Description |
---|---|
RawArray
|
mne.io.RawArray: The converted RawArray, with spikes labeled as annotations |
Source code in pythoneeg/visualization/results.py
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 |
|
save_fif_and_json(folder, convert_to_mne=True, make_folder=True, slugify_filebase=True, save_abbrevs_as_chnames=False, overwrite=False)
Archive spike analysis result into the folder specified, as a fif and json file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
folder
|
str | Path
|
Destination folder to save results to |
required |
convert_to_mne
|
bool
|
If True, convert the SortingAnalyzers to a MNE RawArray if self.result_mne is None. Defaults to True. |
True
|
make_folder
|
bool
|
If True, create the folder if it doesn't exist. Defaults to True. |
True
|
slugify_filebase
|
bool
|
If True, slugify the filebase (replace special characters). Defaults to True. |
True
|
save_abbrevs_as_chnames
|
bool
|
If True, save the channel abbreviations as the channel names in the json file. Defaults to False. |
False
|
overwrite
|
bool
|
If True, overwrite the existing files. Defaults to False. |
False
|
Source code in pythoneeg/visualization/results.py
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 |
|
WindowAnalysisResult
Bases: AnimalFeatureParser
Wrapper for output of windowed analysis. Has useful functions like group-wise and global averaging, filtering, and saving
Source code in pythoneeg/visualization/results.py
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 |
|
__init__(result, animal_id=None, genotype=None, channel_names=None, assume_from_number=False, bad_channels_dict={}, suppress_short_interval_error=False, lof_scores_dict={})
Parameters:
Name | Type | Description | Default |
---|---|---|---|
result
|
DataFrame
|
Result comes from AnimalOrganizer.compute_windowed_analysis() |
required |
animal_id
|
str
|
Identifier for the animal where result was computed from. Defaults to None. |
None
|
genotype
|
str
|
Genotype of animal. Defaults to None. |
None
|
channel_names
|
list[str]
|
List of channel names. Defaults to None. |
None
|
assume_channels
|
bool
|
If true, assumes channel names according to AnimalFeatureParser.DEFAULT_CHNUM_TO_NAME. Defaults to False. |
required |
bad_channels_dict
|
dict[str, list[str]]
|
Dictionary of channels to reject for each recording session. Defaults to {}. |
{}
|
suppress_short_interval_error
|
bool
|
If True, suppress ValueError for short intervals between timestamps. Useful for aggregated WARs with large window sizes. Defaults to False. |
False
|
Source code in pythoneeg/visualization/results.py
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 |
|
__update_instance_vars()
Run after updating self.result, or other init values
Source code in pythoneeg/visualization/results.py
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 |
|
add_unique_hash(nbytes=None)
Adds a hex hash to the animal ID to ensure uniqueness. This prevents collisions when, for example, multiple animals in ExperimentPlotter have the same animal ID.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
nbytes
|
int
|
Number of bytes to generate. This is passed directly to secrets.token_hex(). Defaults to None, which generates 16 hex characters (8 bytes). |
None
|
Source code in pythoneeg/visualization/results.py
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 |
|
aggregate_time_windows(groupby=['animalday', 'isday'])
Aggregate time windows into a single data point per groupby by averaging features. This reduces the number of rows in the result.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
groupby
|
list[str] | str
|
Columns to group by. Defaults to ['animalday', 'isday'], which groups by animalday (recording session) and isday (day/night). |
['animalday', 'isday']
|
Raises:
Type | Description |
---|---|
ValueError
|
groupby must be from ['animalday', 'isday'] |
ValueError
|
Columns in groupby not found in result |
ValueError
|
Columns in groupby are not constant in groups |
Source code in pythoneeg/visualization/results.py
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 |
|
apply_filters(filter_config=None, min_valid_channels=3, morphological_smoothing_seconds=None)
Apply multiple filters using configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filter_config
|
dict
|
Dictionary of filter names and parameters. Available filters: 'logrms_range', 'high_rms', 'low_rms', 'high_beta', 'reject_channels', 'reject_channels_by_session', 'morphological_smoothing' |
None
|
min_valid_channels
|
int
|
Minimum valid channels per window. Defaults to 3. |
3
|
morphological_smoothing_seconds
|
float
|
Temporal smoothing window (deprecated, use config instead) |
None
|
Returns:
Name | Type | Description |
---|---|---|
WindowAnalysisResult |
WindowAnalysisResult
|
New filtered instance |
Examples:
>>> config = {
... 'logrms_range': {'z_range': 3},
... 'high_rms': {'max_rms': 500},
... 'reject_channels': {'bad_channels': ['LMot', 'RMot']},
... 'morphological_smoothing': {'smoothing_seconds': 8.0}
... }
>>> filtered_war = war.apply_filters(config)
Source code in pythoneeg/visualization/results.py
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 |
|
evaluate_lof_threshold_binary(ground_truth_bad_channels=None, threshold=None, evaluation_channels=None)
Evaluate single threshold against ground truth for binary classification.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ground_truth_bad_channels
|
dict
|
Dict mapping animal-day to bad channel sets. If None, uses self.bad_channels_dict as ground truth. |
None
|
threshold
|
float
|
LOF threshold to test |
None
|
evaluation_channels
|
list[str]
|
Subset of channels to include in evaluation. If none, uses all channels. |
None
|
Returns:
Name | Type | Description |
---|---|---|
tuple |
tuple
|
(y_true_list, y_pred_list) for sklearn.metrics.f1_score Each element represents one channel from one animal-day |
Source code in pythoneeg/visualization/results.py
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 |
|
filter_all(df=None, inplace=True, min_valid_channels=3, filters=None, morphological_smoothing_seconds=None, **kwargs)
Apply a list of filters to the data. Filtering should be performed before aggregation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
If not None, this function will use this dataframe instead of self.result. Defaults to None. |
None
|
inplace
|
bool
|
If True, modify the result in place. Defaults to True. |
True
|
bad_channels
|
list[str]
|
List of channels to reject. Defaults to None. |
required |
min_valid_channels
|
int
|
Minimum number of valid channels required per window. Defaults to 3. |
3
|
filters
|
list[callable]
|
List of filter functions to apply. Each function should return a boolean mask. If None, uses default filters: [get_filter_logrms_range, get_filter_high_rms, get_filter_low_rms, get_filter_high_beta]. Defaults to None. |
None
|
morphological_smoothing_seconds
|
float
|
If provided, apply morphological opening/closing to smooth the filter mask. This removes isolated false positives/negatives along the time axis for each channel independently. The value specifies the time window in seconds for the morphological operations. Defaults to None. |
None
|
save_bad_channels
|
Literal['overwrite', 'union', None]
|
How to save bad channels to self.bad_channels_dict. This parameter is passed to the filtering functions. Defaults to "union". Note: When using "overwrite" mode, the bad_channels parameter and bad_channels_dict parameter may conflict and overwrite each other's bad channel definitions if both are provided. |
required |
**kwargs
|
Additional keyword arguments to pass to filter functions. |
{}
|
Returns:
Name | Type | Description |
---|---|---|
WindowAnalysisResult |
Filtered result |
Source code in pythoneeg/visualization/results.py
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 |
|
filter_high_beta(max_beta_prop=0.4)
Filter out windows with high beta power.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_beta_prop
|
float
|
Maximum beta power proportion. Defaults to 0.4. |
0.4
|
Returns:
Name | Type | Description |
---|---|---|
WindowAnalysisResult |
WindowAnalysisResult
|
New filtered instance |
Source code in pythoneeg/visualization/results.py
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 |
|
filter_high_rms(max_rms=500)
Filter out windows with RMS above threshold.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
max_rms
|
float
|
Maximum RMS threshold. Defaults to 500. |
500
|
Returns:
Name | Type | Description |
---|---|---|
WindowAnalysisResult |
WindowAnalysisResult
|
New filtered instance |
Source code in pythoneeg/visualization/results.py
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 |
|
filter_logrms_range(z_range=3)
Filter based on log(rms) z-score range.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
z_range
|
float
|
Z-score range threshold. Defaults to 3. |
3
|
Returns:
Name | Type | Description |
---|---|---|
WindowAnalysisResult |
WindowAnalysisResult
|
New filtered instance |
Source code in pythoneeg/visualization/results.py
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 |
|
filter_low_rms(min_rms=50)
Filter out windows with RMS below threshold.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
min_rms
|
float
|
Minimum RMS threshold. Defaults to 50. |
50
|
Returns:
Name | Type | Description |
---|---|---|
WindowAnalysisResult |
WindowAnalysisResult
|
New filtered instance |
Source code in pythoneeg/visualization/results.py
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 |
|
filter_morphological_smoothing(smoothing_seconds)
Apply morphological smoothing to all data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
smoothing_seconds
|
float
|
Time window in seconds for morphological operations |
required |
Returns:
Name | Type | Description |
---|---|---|
WindowAnalysisResult |
WindowAnalysisResult
|
New filtered instance |
Source code in pythoneeg/visualization/results.py
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 |
|
filter_reject_channels(bad_channels, use_abbrevs=None)
Filter out specified bad channels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bad_channels
|
list[str]
|
List of channel names to reject |
required |
use_abbrevs
|
bool
|
Whether to use abbreviations. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
WindowAnalysisResult |
WindowAnalysisResult
|
New filtered instance |
Source code in pythoneeg/visualization/results.py
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 |
|
filter_reject_channels_by_session(bad_channels_dict=None, use_abbrevs=None)
Filter out bad channels by recording session.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bad_channels_dict
|
dict[str, list[str]]
|
Dictionary mapping recording session identifiers to lists of bad channel names to reject. Session identifiers are in the format "{animal_id} {genotype} {day}" (e.g., "A10 WT Apr-01-2023"). Channel names can be either full names (e.g., "Left Auditory") or abbreviations (e.g., "LAud"). If None, uses the bad_channels_dict from the constructor. Defaults to None. |
None
|
use_abbrevs
|
bool
|
Override automatic channel name format detection. If True, channels are assumed to be abbreviations. If False, channels are assumed to be full names. If None, automatically detects format and converts to abbreviations for matching. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
WindowAnalysisResult |
WindowAnalysisResult
|
New filtered instance with bad channels masked as NaN for their respective recording sessions |
Examples:
Filter specific channels per session using abbreviations:
>>> bad_channels = {
... "A10 WT Apr-01-2023": ["LAud", "RMot"], # Session 1: reject left auditory, right motor
... "A10 WT Apr-02-2023": ["LVis"] # Session 2: reject left visual only
... }
>>> filtered_war = war.filter_reject_channels_by_session(bad_channels, use_abbrevs=True)
Filter using full channel names:
>>> bad_channels = {
... "A12 KO May-15-2023": ["Left Motor", "Right Barrel"],
... "A12 KO May-16-2023": ["Left Auditory", "Left Visual", "Right Motor"]
... }
>>> filtered_war = war.filter_reject_channels_by_session(bad_channels, use_abbrevs=False)
Auto-detect channel format (recommended):
>>> bad_channels = {
... "A15 WT Jun-10-2023": ["LMot", "RBar"], # Will auto-detect as abbreviations
... "A15 WT Jun-11-2023": ["LAud"]
... }
>>> filtered_war = war.filter_reject_channels_by_session(bad_channels)
Note
- Session identifiers must exactly match the "animalday" values in the result DataFrame
- Available channel abbreviations: LAud, RAud, LVis, RVis, LHip, RHip, LBar, RBar, LMot, RMot
- Channel names are case-insensitive and support various formats (e.g., "left aud", "Left Auditory")
- If a session identifier is not found in bad_channels_dict, a warning is logged but processing continues
- If a channel name is not recognized, a warning is logged but other channels are still processed
Source code in pythoneeg/visualization/results.py
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 |
|
get_bad_channels_by_lof_threshold(lof_threshold)
Apply LOF threshold directly to stored scores to get bad channels.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lof_threshold
|
float
|
Threshold for determining bad channels. |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
Dictionary mapping animal days to lists of bad channel names. |
Source code in pythoneeg/visualization/results.py
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 |
|
get_filter_high_beta(df=None, max_beta_prop=0.4, **kwargs)
Filter windows based on beta power.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
If not None, this function will use this dataframe instead of self.result. Defaults to None. |
None
|
max_beta_prop
|
float
|
The maximum beta power to filter by. Values above this will be set to NaN. Defaults to 0.4. |
0.4
|
Returns:
Name | Type | Description |
---|---|---|
out |
np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window |
Source code in pythoneeg/visualization/results.py
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 |
|
get_filter_high_rms(df=None, max_rms=500, **kwargs)
Filter windows based on rms.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
If not None, this function will use this dataframe instead of self.result. Defaults to None. |
None
|
max_rms
|
float
|
The maximum rms value to filter by. Values above this will be set to NaN. |
500
|
Returns:
Name | Type | Description |
---|---|---|
out |
np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window |
Source code in pythoneeg/visualization/results.py
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 |
|
get_filter_logrms_range(df=None, z_range=3, **kwargs)
Filter windows based on log(rms).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
If not None, this function will use this dataframe instead of self.result. Defaults to None. |
None
|
z_range
|
float
|
The z-score range to filter by. Values outside this range will be set to NaN. |
3
|
Returns:
Name | Type | Description |
---|---|---|
out |
np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window |
Source code in pythoneeg/visualization/results.py
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 |
|
get_filter_low_rms(df=None, min_rms=30, **kwargs)
Filter windows based on rms.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
If not None, this function will use this dataframe instead of self.result. Defaults to None. |
None
|
min_rms
|
float
|
The minimum rms value to filter by. Values below this will be set to NaN. |
30
|
Returns:
Name | Type | Description |
---|---|---|
out |
np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window |
Source code in pythoneeg/visualization/results.py
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 |
|
get_filter_morphological_smoothing(filter_mask, smoothing_seconds, **kwargs)
Apply morphological smoothing to a filter mask.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filter_mask
|
ndarray
|
Input boolean mask of shape (n_windows, n_channels) |
required |
smoothing_seconds
|
float
|
Time window in seconds for morphological operations |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Smoothed boolean mask |
Source code in pythoneeg/visualization/results.py
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 |
|
get_filter_reject_channels(df=None, bad_channels=None, use_abbrevs=None, save_bad_channels='union', **kwargs)
Filter channels to reject.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
If not None, this function will use this dataframe instead of self.result. Defaults to None. |
None
|
bad_channels
|
list[str]
|
List of channels to reject. Can be either full channel names or abbreviations. The method will automatically detect which format is being used. If None, no filtering is performed. |
None
|
use_abbrevs
|
bool
|
Override automatic detection. If True, channels are assumed to be channel abbreviations. If False, channels are assumed to be channel names. If None, channels are parsed to abbreviations and matched against self.channel_abbrevs. |
None
|
save_bad_channels
|
Literal['overwrite', 'union', None]
|
How to save bad channels to self.bad_channels_dict. "overwrite": Replace self.bad_channels_dict completely with bad channels applied to all sessions. "union": Merge bad channels with existing self.bad_channels_dict for all sessions. None: Don't save to self.bad_channels_dict. Defaults to "union". Note: When using "overwrite" mode, the bad_channels parameter and bad_channels_dict parameter may conflict and overwrite each other's bad channel definitions if both are provided. |
'union'
|
Returns:
Name | Type | Description |
---|---|---|
out |
np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window |
Source code in pythoneeg/visualization/results.py
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 |
|
get_filter_reject_channels_by_recording_session(df=None, bad_channels_dict=None, use_abbrevs=None, save_bad_channels='union', **kwargs)
Filter channels to reject for each recording session
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
If not None, this function will use this dataframe instead of self.result. Defaults to None. |
None
|
bad_channels_dict
|
dict[str, list[str]]
|
Dictionary of list of channels to reject for each recording session. Can be either full channel names or abbreviations. The method will automatically detect which format is being used. If None, the method will use the bad_channels_dict passed to the constructor. |
None
|
use_abbrevs
|
bool
|
Override automatic detection. If True, channels are assumed to be channel abbreviations. If False, channels are assumed to be channel names. If None, channels are parsed to abbreviations and matched against self.channel_abbrevs. |
None
|
save_bad_channels
|
Literal['overwrite', 'union', None]
|
How to save bad channels to self.bad_channels_dict. "overwrite": Replace self.bad_channels_dict completely with bad_channels_dict. "union": Merge bad_channels_dict with existing self.bad_channels_dict per session. None: Don't save to self.bad_channels_dict. Defaults to "union". Note: When using "overwrite" mode, the bad_channels parameter and bad_channels_dict parameter may conflict and overwrite each other's bad channel definitions if both are provided. |
'union'
|
Returns:
Name | Type | Description |
---|---|---|
out |
np.ndarray of bool, (M fragments, N channels). True = keep window, False = remove window |
Source code in pythoneeg/visualization/results.py
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 |
|
get_groupavg_result(features, exclude=[], df=None, groupby='animalday')
Group result and average within groups. Preserves data structure and shape for each feature.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
list[str]
|
List of features to get from result |
required |
exclude
|
list[str]
|
List of features to exclude from result. Will override the features parameter. Defaults to []. |
[]
|
df
|
DataFrame
|
If not None, this function will use this dataframe instead of self.result. Defaults to None. |
None
|
groupby
|
str
|
Feature or list of features to group by before averaging. Passed to the |
'animalday'
|
Returns:
Name | Type | Description |
---|---|---|
grouped_result |
result grouped by |
Source code in pythoneeg/visualization/results.py
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 |
|
get_info()
Returns a formatted string with basic information about the WindowAnalysisResult object
Source code in pythoneeg/visualization/results.py
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 |
|
get_lof_scores()
Get LOF scores from this WAR.
Returns:
Name | Type | Description |
---|---|---|
dict |
dict
|
Dictionary mapping animal days to LOF score dictionaries. |
Source code in pythoneeg/visualization/results.py
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 |
|
get_result(features, exclude=[], allow_missing=False)
Get windowed analysis result dataframe, with helpful filters
Parameters:
Name | Type | Description | Default |
---|---|---|---|
features
|
list[str]
|
List of features to get from result |
required |
exclude
|
list[str]
|
List of features to exclude from result; will override the features parameter. Defaults to []. |
[]
|
allow_missing
|
bool
|
If True, will return all requested features as columns regardless if they exist in result. Defaults to False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
result |
pd.DataFrame object with features in columns and windows in rows |
Source code in pythoneeg/visualization/results.py
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 |
|
load_pickle_and_json(folder_path=None, pickle_name=None, json_name=None)
classmethod
Load WindowAnalysisResult from folder
Parameters:
Name | Type | Description | Default |
---|---|---|---|
folder_path
|
str
|
Path of folder containing .pkl and .json files. Defaults to None. |
None
|
pickle_name
|
str
|
Name of the pickle file. Can be just the filename (e.g. "war.pkl") or a path relative to folder_path (e.g. "subdir/war.pkl"). If None and folder_path is provided, expects exactly one .pkl file in folder_path. Defaults to None. |
None
|
json_name
|
str
|
Name of the JSON file. Can be just the filename (e.g. "war.json") or a path relative to folder_path (e.g. "subdir/war.json"). If None and folder_path is provided, expects exactly one .json file in folder_path. Defaults to None. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
folder_path does not exist |
ValueError
|
Expected exactly one pickle and one json file in folder_path (when pickle_name/json_name not specified) |
FileNotFoundError
|
Specified pickle_name or json_name not found |
Returns:
Name | Type | Description |
---|---|---|
result |
WindowAnalysisResult object |
Source code in pythoneeg/visualization/results.py
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 |
|
reorder_and_pad_channels(target_channels, use_abbrevs=True, inplace=True)
Reorder and pad channels to match a target channel list.
This method ensures that the data has a consistent channel order and structure by reordering existing channels and padding missing channels with NaNs.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_channels
|
list[str]
|
List of target channel names to match |
required |
use_abbrevs
|
bool
|
If True, target channel names are read as channel abbreviations instead of channel names. Defaults to True. |
True
|
inplace
|
bool
|
If True, modify the result in place. Defaults to True. |
True
|
Returns: pd.DataFrame: DataFrame with reordered and padded channels
Source code in pythoneeg/visualization/results.py
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 |
|
save_pickle_and_json(folder, make_folder=True, filename=None, slugify_filename=False, save_abbrevs_as_chnames=False)
Archive window analysis result into the folder specified, as a pickle and json file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
folder
|
str | Path
|
Destination folder to save results to |
required |
make_folder
|
bool
|
If True, create the folder if it doesn't exist. Defaults to True. |
True
|
filename
|
str
|
Name of the file to save. Defaults to "war". |
None
|
slugify_filename
|
bool
|
If True, slugify the filename (replace special characters). Defaults to False. |
False
|
save_abbrevs_as_chnames
|
bool
|
If True, save the channel abbreviations as the channel names in the json file. Defaults to False. |
False
|
Source code in pythoneeg/visualization/results.py
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 |
|
bin_spike_times(spike_times, fragment_durations)
Bin spike times into counts based on fragment durations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spike_times
|
list[float]
|
List of spike timestamps in seconds |
required |
fragment_durations
|
list[float]
|
List of fragment durations in seconds |
required |
Returns:
Type | Description |
---|---|
list[int]
|
list[int]: List of spike counts per fragment |
Source code in pythoneeg/visualization/results.py
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 |
|