21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942 | class ExperimentPlotter:
"""
A class for creating various plots from a list of multiple experimental datasets.
This class provides methods for creating different types of plots (boxplot, violin plot,
scatter plot, etc.) from experimental data with consistent data processing and styling.
Plot Ordering
------------
The class automatically sorts data according to predefined plot orders for columns like
'channel', 'genotype', 'sex', 'isday', and 'band'. Users can customize this ordering
during initialization:
plotter = ExperimentPlotter(wars, plot_order={'channel': ['LMot', 'RMot', ...]})
The default plot orders are defined in constants.DF_SORT_ORDER.
Validation and Warnings
----------------------
The class automatically validates plot order against the processed DataFrame during plotting
and raises warnings for any mismatches. Use validate_plot_order() to explicitly validate:
plotter.validate_plot_order(df)
Examples
--------
# Customize plot ordering during initialization
custom_order = {
'channel': ['LMot', 'RMot', 'LBar', 'RBar'], # Only include specific channels
'genotype': ['WT', 'KO'], # Standard order
'sex': ['Female', 'Male'] # Custom order
}
plotter = ExperimentPlotter(wars, plot_order=custom_order)
"""
def __init__(
self,
wars: viz.WindowAnalysisResult | list[viz.WindowAnalysisResult],
features: list[str] = None,
exclude: list[str] = None,
use_abbreviations: bool = True,
plot_order: dict = None,
):
"""
Initialize plotter with WindowAnalysisResult object(s).
Parameters
----------
wars : WindowAnalysisResult or list[WindowAnalysisResult]
Single WindowAnalysisResult or list of WindowAnalysisResult objects
features : list[str], optional
List of features to extract. If None, defaults to ['all']
exclude : list[str], optional
List of features to exclude from extraction
use_abbreviations : bool, optional
Whether to use abbreviations for channel names
plot_order : dict, optional
Dictionary mapping column names to the order of values for plotting.
If None, uses constants.DF_SORT_ORDER.
"""
features = features if features else ["all"]
if not isinstance(wars, list):
wars = [wars]
if not wars:
raise ValueError("wars cannot be empty")
self.results = wars
if use_abbreviations:
self.channel_names = [war.channel_abbrevs for war in wars]
else:
self.channel_names = [war.channel_names for war in wars]
self.channel_to_idx = [{e: i for i, e in enumerate(chnames)} for chnames in self.channel_names]
self.all_channel_names = sorted(list(set([name for chnames in self.channel_names for name in chnames])))
# Check for inhomogeneous channel numbers/names
if len(set(len(channels) for channels in self.channel_names)) > 1:
warnings.warn(
"Inhomogeneous channel numbers across WindowAnalysisResult objects, which may cause errors. Run WAR.reorder_and_pad_channels() to fix."
)
# Check if channel names are consistent across all results
first_channels = set(self.channel_names[0])
for i, channels in enumerate(self.channel_names[1:], 1):
if set(channels) != first_channels:
warnings.warn(
f"Inhomogeneous channel names between WindowAnalysisResult {wars[i].animal_id} and first result, which may cause errors. Run WAR.reorder_and_pad_channels() to fix."
)
logging.info(f"channel_names: {self.channel_names}")
logging.info(f"channel_to_idx: {self.channel_to_idx}")
logging.info(f"all_channel_names: {self.all_channel_names}")
animal_ids = [war.animal_id for war in wars]
counts = Counter(animal_ids)
duplicates = [animal_id for animal_id, count in counts.items() if count > 1]
if duplicates:
warnings.warn(
f"Duplicate animal IDs found: {duplicates}. Figures will still generate, but there may be data overlap. Change WAR.animal_id to avoid this issue."
)
# Process all data into DataFrames
df_wars = []
for war in wars:
try:
dftemp = war.get_result(features=features, exclude=exclude, allow_missing=False)
df_wars.append(dftemp)
except KeyError as e:
logging.error(
f"Features missing in {war}. Exclude the missing features during ExperimentPlotter init, or recompute WARs with missing features."
)
raise e
self.df_wars: list[pd.DataFrame] = df_wars
self.concat_df_wars: pd.DataFrame = pd.concat(
df_wars, axis=0, ignore_index=True
) # TODO this raises a warning about df wars having columns that are none I think
self.stats = None
self._plot_order = plot_order if plot_order is not None else constants.DF_SORT_ORDER.copy()
def validate_plot_order(self, df: pd.DataFrame, raise_errors: bool = False) -> dict:
"""
Validate that the current plot_order contains all necessary categories for the data.
Parameters
----------
df : pd.DataFrame
DataFrame to validate against (should be the DataFrame that will be sorted).
raise_errors : bool, optional
Whether to raise errors for validation issues. Default is False.
Returns
-------
dict
Dictionary with validation results for each column
"""
validation_results = {}
# Only validate columns that exist in the DataFrame
columns_to_validate = [col for col in self._plot_order.keys() if col in df.columns]
for col in columns_to_validate:
categories = self._plot_order[col]
unique_values = set(df[col].dropna().unique())
missing_in_order = unique_values - set(categories)
validation_results[col] = {
"status": "valid" if not missing_in_order else "issues",
"unique_values": list(unique_values),
"defined_categories": categories,
"missing_in_order": list(missing_in_order),
}
if missing_in_order:
if raise_errors:
raise ValueError(
f'Plot order for column "{col}" is missing values found in data: {missing_in_order}'
)
else:
warnings.warn(
f'Plot order for column "{col}" is missing values found in data: {missing_in_order}',
UserWarning,
stacklevel=2,
)
return validation_results
def pull_timeseries_dataframe(
self,
feature: str,
groupby: str | list[str],
channels: str | list[str] = "all",
collapse_channels: bool = False,
average_groupby: bool = False,
strict_groupby: bool = False,
):
"""
Process feature data for plotting.
Parameters
----------
feature : str
The feature to get.
groupby : str or list[str]
The variable(s) to group by.
channels : str or list[str], optional
The channels to get. If 'all', all channels are used.
collapse_channels : bool, optional
Whether to average the channels to one value.
average_groupby : bool, optional
Whether to average the groupby variable(s).
strict_groupby : bool, optional
If True, raise an exception when groupby columns contain NaN values.
If False (default), only issue a warning.
Returns
-------
df : pd.DataFrame
A DataFrame with the feature data.
"""
if "band" in groupby or groupby == "band":
raise ValueError(
# NOTE band not existing is potentially confusing error message if you are just using pull_timesereies_dataframe, there must be a more elegant way to handle this
"'band' is not supported as a groupby variable. Use 'band' as a col/row/hue/x variable instead."
)
logging.info(
f"feature: {feature}, groupby: {groupby}, channels: {channels}, collapse_channels: {collapse_channels}, average_groupby: {average_groupby}"
)
if channels == "all":
channels = self.all_channel_names
elif not isinstance(channels, list):
channels = [channels]
df = self.concat_df_wars.copy() # Use the combined DataFrame from __init__
if isinstance(groupby, str):
groupby = [groupby]
# Validate groupby columns exist and check for NaN values
missing_cols = [col for col in groupby if col not in df.columns]
if missing_cols:
raise ValueError(
f"Groupby columns not found in data: {missing_cols}. Available columns: {df.columns.tolist()}"
)
# Check for NaN values in groupby columns
nan_cols = []
for col in groupby:
if df[col].isna().any():
nan_count = df[col].isna().sum()
total_count = len(df)
nan_cols.append(f"{col} ({nan_count}/{total_count} NaN values)")
if nan_cols:
error_msg = (
f"Groupby columns contain NaN values: {', '.join(nan_cols)}. "
"This may result from previous aggregation operations (e.g., aggregate_time_windows) "
"where these columns were not included in the groupby. "
"Consider: 1) Including these columns in your aggregation groupby, "
"2) Filtering out NaN rows before plotting, or "
"3) Using different groupby columns."
)
if strict_groupby:
raise ValueError(error_msg)
else:
warnings.warn(error_msg, UserWarning, stacklevel=2)
groups = list(df.groupby(groupby).groups.keys())
logging.debug(f"groups: {groups}")
# Check if grouping resulted in any groups
if not groups: # FIXME this isn't triggering for empty groupby
raise ValueError(
f"No valid groups found when grouping by {groupby}. "
"This may be due to all values being NaN in one or more groupby columns. "
"Check your data and groupby parameters."
)
# first iterate through animals, since that determines channel idx
# then pull out feature into matrix, assign channels, and add to dataframe
# meanwhile carrying over the groupby feature
dataframes = []
for i, war in enumerate(self.results):
df_war = self.df_wars[i]
ch_to_idx = self.channel_to_idx[i]
ch_names = self.channel_names[i]
if feature not in df_war.columns:
raise ValueError(f"'{feature}' feature not found in {war}")
match feature:
case _ if feature in constants.LINEAR_FEATURES + constants.BAND_FEATURES:
if feature in constants.BAND_FEATURES:
df_bands = pd.DataFrame(df_war[feature].tolist())
vals = np.array(df_bands.values.tolist())
vals = vals.transpose((0, 2, 1))
else:
vals = np.array(df_war[feature].tolist())
if collapse_channels:
vals = np.nanmean(vals, axis=1)
logging.debug(f"vals.shape: {vals.shape}")
vals = {"average": vals.tolist()}
else:
logging.debug(f"vals.shape: {vals.shape}")
vals = {ch: vals[:, ch_to_idx[ch]].tolist() for ch in channels if ch in ch_names}
vals = df_war[groupby].to_dict("list") | vals
case "pcorr" | "zpcorr":
vals = np.array(df_war[feature].tolist())
if collapse_channels:
# Get lower triangular elements (excluding diagonal)
tril_indices = np.tril_indices(vals.shape[1], k=-1)
# Take mean across pairs
vals = np.nanmean(vals[:, tril_indices[0], tril_indices[1]], axis=-1)
logging.debug(f"vals.shape: {vals.shape}")
vals = {"average": vals.tolist()}
else:
logging.debug(f"vals.shape: {vals.shape}")
vals = {"all": vals.tolist()}
vals = df_war[groupby].to_dict("list") | vals
case "cohere" | "zcohere" | "imcoh" | "zimcoh":
df_bands = pd.DataFrame(df_war[feature].tolist())
vals = np.array(df_bands.values.tolist())
logging.debug(f"vals.shape: {vals.shape}")
if collapse_channels:
tril_indices = np.tril_indices(vals.shape[1], k=-1)
vals = np.nanmean(vals[:, :, tril_indices[0], tril_indices[1]], axis=-1)
logging.debug(f"vals.shape: {vals.shape}")
vals = {"average": vals.tolist()}
else:
logging.debug(f"vals.shape: {vals.shape}")
vals = {"all": vals.tolist()}
vals = df_war[groupby].to_dict("list") | vals
# ANCHOR
case _ if feature in constants.HIST_FEATURES:
# REVIEW revise this, splitting up frequencys and values and instead making both of them independent features
# this way they can be averaged, processed, etc. without worrying about tuple things
# if freq present, explode it
psd_data = df_war[feature].tolist()
freq_vals = np.array(
[item[0] if isinstance(item, tuple) and len(item) == 2 else item for item in psd_data]
)
n_unique_freq_vals = np.unique(freq_vals, axis=0).shape[0]
if n_unique_freq_vals > 1:
raise ValueError(
f"Multiple frequency bin values found in {feature}: {n_unique_freq_vals} values"
)
psd_vals = np.array(
[item[1] if isinstance(item, tuple) and len(item) == 2 else item for item in psd_data]
)
psd_vals = psd_vals.transpose((0, 2, 1))
logging.debug(f"freq_vals.shape: {freq_vals.shape}, psd_vals.shape: {psd_vals.shape}")
# freq_vals.shape: (8, 501), psd_vals.shape: (8, 10, 501)
if collapse_channels:
psd_vals = np.nanmean(psd_vals, axis=1)
logging.debug(f"psd_vals.shape: {psd_vals.shape}") # (8, 501)
psd_vals = {"average": psd_vals.tolist()}
else:
logging.debug(f"psd_vals.shape: {psd_vals.shape}") # (8, 10, 501)
psd_vals = {
ch: psd_vals[:, ch_to_idx[ch], :].tolist() for ch in channels if ch in ch_names
} # (8, 10, 501)
psd_vals = psd_vals | {"freq": freq_vals.tolist()}
vals = df_war[groupby].to_dict("list") | psd_vals
case _:
raise ValueError(f"{feature} is not supported in _pull_timeseries_dataframe")
df_feature = pd.DataFrame.from_dict(vals, orient="columns")
dataframes.append(df_feature)
df = pd.concat(dataframes, axis=0, ignore_index=True)
if feature in constants.HIST_FEATURES:
melt_groupby = groupby + ["freq"]
else:
melt_groupby = groupby
feature_cols = [col for col in df.columns if col not in melt_groupby]
df = df.melt(id_vars=melt_groupby, value_vars=feature_cols, var_name="channel", value_name=feature)
if feature == "psd":
df = df.explode(["psd", "freq"])
if feature == "psdslope":
if df[feature].isna().any():
logging.warning(f"{feature} contains NaNs")
df = df[df[feature].notna()]
df[feature] = df[feature].apply(lambda x: x[0]) # get slope from [slope, intercept]
elif feature in constants.BAND_FEATURES + ["cohere", "zcohere", "imcoh", "zimcoh"]:
df[feature] = df[feature].apply(lambda x: list(zip(x, constants.BAND_NAMES)))
df = df.explode(feature)
df[[feature, "band"]] = pd.DataFrame(df[feature].tolist(), index=df.index)
df.reset_index(drop=True, inplace=True)
# REVIEW is this averaging correctly, i.e. animals lumped then lump together.
# it appears to average everything at once, but animals should be averaged first?
# is this just a user thing?
# it is just a user thing, but users should know about this detail
# namely, individual animaldays are proccessed so fundamentally its like an underlying "animalday" is part of groupby
# intuitively you'd think the groupbys are applied to the aggregated full array but that's not so
# this shouldn't be the case but maybe merging all the DFs is a memory intensive process
# look into this
if average_groupby:
groupby_cols = df.columns.drop(feature).tolist()
logging.debug(f"groupby_cols: {groupby_cols}")
grouped = df.groupby(groupby_cols, sort=False, dropna=False)
df = grouped[feature].apply(core.utils.nanmean_series_of_np).reset_index()
# baseline_means = (df_base
# .groupby(remaining_groupby)[feature]
# .apply(nanmean_series_of_np))
# Validate plot order against the DataFrame that will be sorted
self.validate_plot_order(df)
df = core.utils.sort_dataframe_by_plot_order(df, self._plot_order)
return df
def plot_catplot(
self,
feature: str,
groupby: str | list[str],
df: pd.DataFrame = None,
x: str = None,
col: str = None,
hue: str = None,
kind: Literal["box", "boxen", "violin", "strip", "swarm", "bar", "point"] = "box",
catplot_params: dict = None,
channels: str | list[str] = "all",
collapse_channels: bool = False,
average_groupby: bool = False,
title: str = None,
cmap: str = None,
stat_pairs: list[tuple[str, str]] | Literal["all", "x", "hue"] = None,
stat_test: str = "Mann-Whitney",
norm_test: Literal[None, "D-Agostino", "log-D-Agostino", "K-S"] = None,
) -> sns.FacetGrid:
"""
Create a boxplot of feature data.
"""
if feature in constants.MATRIX_FEATURES and not collapse_channels:
raise ValueError("To plot matrix features, collapse_channels must be True")
if feature in constants.HIST_FEATURES:
raise ValueError(
f"'{feature}' is a histogram feature and is not supported in plot_catplot. Use plot_psd instead."
)
if df is None:
df = self.pull_timeseries_dataframe(feature, groupby, channels, collapse_channels, average_groupby)
if isinstance(groupby, str):
groupby = [groupby]
# By default, just map x = groupby0, col = groupby1, hue = channel
default_params = {
"data": df,
"x": groupby[0],
"y": feature,
"hue": "channel",
"col": groupby[1] if len(groupby) > 1 else None,
"kind": kind,
"palette": cmap,
}
# Update default params if x, col, or hue are explicitly provided
if x is not None:
default_params["x"] = x
if col is not None:
default_params["col"] = col
if hue is not None:
default_params["hue"] = hue
if catplot_params:
default_params.update(catplot_params)
# Check that x, col, and hue parameters exist in dataframe columns
for param_name in ["x", "col", "hue"]:
if default_params[param_name] == feature:
raise ValueError(f"'{param_name}' cannot be the same as 'feature'")
if default_params[param_name] is not None and default_params[param_name] not in df.columns:
raise ValueError(
f"Parameter '{param_name}={default_params[param_name]}' not found in dataframe columns: {df.columns.tolist()}"
)
# # Apply ordering to x, col, and hue if not already provided
# for param_name in ['x', 'col', 'hue']:
# param_order_name = 'order' if param_name == 'x' else param_name + '_order'
# if default_params[param_name] in constants.PLOT_ORDER and not (catplot_params is not None and param_order_name in catplot_params):
# default_params[param_order_name] = constants.PLOT_ORDER[default_params[param_name]]
# Create boxplot using seaborn
g = sns.catplot(**default_params)
g.set_xticklabels(rotation=45, ha="right")
g.set_titles(title)
# Only try to modify legend if it exists
if g.legend is not None:
g.legend.set_loc("center left")
g.legend.set_bbox_to_anchor((1.0, 0.5))
# Add grid to y-axis for all subplots
for ax in g.axes.flat:
ax.yaxis.grid(True, linestyle="--", which="major", color="grey", alpha=0.25)
groupby_test = [default_params[x] for x in ["x", "col", "hue"] if default_params[x] is not None]
match norm_test:
case None:
pass
case "D-Agostino":
normality_test = self._run_normaltest(df, feature, groupby_test)
print(f"D-Agostino normality test: {normality_test}")
case "log-D-Agostino":
df_log = df.copy()
df_log[feature] = np.log(df_log[feature])
normality_test = self._run_normaltest(df_log, feature, groupby_test)
print(f"D-Agostino log-transformed normality test: {normality_test}")
case "K-S":
normality_test = self._run_kstest(df, feature, groupby_test)
print(f"K-S normality test: {normality_test}")
case _:
raise ValueError(f"{norm_test} is not supported")
if stat_pairs:
annot_params = default_params.copy()
for (i, j, k), df in g.facet_data():
ax = g.facet_axis(i, j)
match stat_pairs:
case "all":
items = core.utils._get_groupby_keys(df, [default_params["x"], default_params["hue"]])
pairs = core.utils._get_pairwise_combinations(items)
case "x":
items_x = core.utils._get_groupby_keys(df, default_params["x"])
pairs_x = core.utils._get_pairwise_combinations(items_x)
items_hue = core.utils._get_groupby_keys(df, default_params["hue"])
pairs = [
((pair[0], hue_item), (pair[1], hue_item)) for hue_item in items_hue for pair in pairs_x
]
logging.debug(f"pairs: {pairs}")
case "hue":
items_hue = core.utils._get_groupby_keys(df, default_params["hue"])
pairs_hue = core.utils._get_pairwise_combinations(items_hue)
items_x = core.utils._get_groupby_keys(df, default_params["x"])
pairs = [((x_item, pair[0]), (x_item, pair[1])) for x_item in items_x for pair in pairs_hue]
logging.debug(f"pairs: {pairs}")
case list():
pairs = stat_pairs
case _:
raise ValueError(f"{stat_pairs} is not supported")
if not pairs:
logging.warning("No pairs found for annotation")
continue
annot_params["data"] = annot_params["data"].dropna()
annotator = Annotator(ax, pairs, verbose=0, **annot_params)
annotator.configure(test=stat_test, text_format="star", loc="inside", verbose=1)
annotator.apply_test(nan_policy="omit")
annotator.annotate()
plt.tight_layout()
return g
def plot_heatmap(
self,
feature: str,
groupby: str | list[str],
df: pd.DataFrame = None,
col: str = None,
row: str = None,
channels: str | list[str] = "all", # REVIEW this might not be needed, since all channels should be visualized
collapse_channels: bool = False, # REVIEW Unable to plot a single cell, this parameter is not needed, if needed just use a catplot
average_groupby: bool = False, # REVIEW average groupby might be a redundant parameter, since matrix plotting already averages
cmap: str = "RdBu_r",
height: float = 3,
aspect: float = 1,
):
"""
Create a 2D feature plot.
"""
if feature not in constants.MATRIX_FEATURES:
raise ValueError(f"{feature} is not supported for 2D feature plots")
if isinstance(groupby, str):
groupby = [groupby]
if df is None:
df = self.pull_timeseries_dataframe(feature, groupby, channels, collapse_channels, average_groupby)
# Create FacetGrid
facet_vars = {
"col": groupby[0] if len(groupby) > 0 else None,
"row": groupby[1] if len(groupby) > 1 else None,
"height": height,
"aspect": aspect,
}
if col is not None:
facet_vars["col"] = col
if row is not None:
facet_vars["row"] = row
# Check that col and row parameters exist in dataframe columns
for param_name in ["col", "row"]:
if facet_vars[param_name] == feature:
raise ValueError(f"'{param_name}' cannot be the same as 'feature'")
if facet_vars[param_name] is not None and facet_vars[param_name] not in df.columns:
raise ValueError(
f"Parameter '{param_name}={facet_vars[param_name]}' not found in dataframe columns: {df.columns.tolist()}"
)
g = sns.FacetGrid(df, **facet_vars)
# Map the plotting function
g.map_dataframe(self._plot_matrix, feature=feature, color_palette=cmap)
# Adjust layout
plt.tight_layout()
return g
def _get_default_pull_timeseries_params(self):
"""Get default parameters for heatmap plotting methods."""
return {
"channels": "all",
"collapse_channels": False,
"average_groupby": False,
}
def plot_heatmap_faceted(
self,
feature: str,
groupby: str | list[str],
facet_vars: list[str] | str,
df: pd.DataFrame = None,
**kwargs,
):
if isinstance(groupby, str):
groupby = [groupby]
if df is None:
pull_params = self._get_default_pull_timeseries_params()
pull_params.update({k: v for k, v in kwargs.items() if k in pull_params.keys()})
df = self.pull_timeseries_dataframe(feature=feature, groupby=groupby, **pull_params)
# Among the variables present, there are a few that need modification
# First modify groupby subtracting facetvars
if isinstance(facet_vars, str):
facet_vars = [facet_vars]
# FIXME this is a very ad hoc modification, and is tied to fixing pulldataframe accepting band as a feature
if feature in ["cohere", "zcohere", "imcoh", "zimcoh"]:
groupby.append("band")
subfacet_groupby = groupby.copy()
for facet_var in facet_vars:
if facet_var not in groupby:
raise ValueError(f"Facet variable {facet_var} must be present in groupby")
subfacet_groupby.remove(facet_var)
# Then iterate over the dataframe facet_Vars unique groupby keys, passing them to plot_heatmap and building a list of facetgrids
grids = []
for name, group in df.groupby(
facet_vars, sort=False
): # TODO not related to here, but look at everywhere else that groupby is performed and consider if you should change it to sort=False
g = self.plot_heatmap(feature=feature, groupby=subfacet_groupby, df=group, **kwargs)
# Create title from facet variable values
if isinstance(name, tuple):
title = " | ".join(f"{var}={val}" for var, val in zip(facet_vars, name))
else:
title = f"{facet_vars[0]}={name}"
g.figure.suptitle(title, y=1.02)
grids.append(g)
return grids
def _plot_matrix(self, data, feature, color_palette="RdBu_r", norm=None, **kwargs):
matrices = np.array(data[feature].tolist())
avg_matrix = np.nanmean(matrices, axis=0)
if norm is None:
norm = colors.CenteredNorm(vcenter=0, halfrange=1)
# Create heatmap
plt.imshow(avg_matrix, cmap=color_palette, norm=norm)
plt.colorbar(fraction=0.046, pad=0.04)
# Set ticks and labels
n_channels = avg_matrix.shape[0]
ch_names = self.channel_names[0]
plt.xticks(range(n_channels), ch_names, rotation=45, ha="right")
plt.yticks(range(n_channels), ch_names)
def plot_diffheatmap(
self,
feature: str,
groupby: str | list[str],
baseline_key: str | bool | tuple[str, ...],
baseline_groupby: str | list[str] = None,
operation: Literal["subtract", "divide"] = "subtract",
remove_baseline: bool = False,
df: pd.DataFrame = None,
col: str = None,
row: str = None,
channels: str | list[str] = "all",
collapse_channels: bool = False,
average_groupby: bool = False,
cmap: str = "RdBu_r",
norm: colors.Normalize | None = None,
height: float = 3,
aspect: float = 1,
):
"""
Create a 2D feature plot of differences between groups. Baseline is subtracted from other groups.
Parameters:
-----------
cmap : str, default="RdBu_r"
Colormap name or matplotlib colormap object
norm : matplotlib.colors.Normalize, optional
Normalization object. If None, will use CenteredNorm with auto-detected range.
Common options:
- colors.CenteredNorm(vcenter=0) # Auto-detect range around 0
- colors.Normalize(vmin=-1, vmax=1) # Fixed range
- colors.LogNorm() # Logarithmic scale
"""
if feature not in constants.MATRIX_FEATURES:
raise ValueError(f"{feature} is not supported for 2D feature plots")
if isinstance(groupby, str):
groupby = [groupby]
if df is None:
df = self.pull_timeseries_dataframe(feature, groupby, channels, collapse_channels, average_groupby)
facet_vars = {
"col": groupby[0] if len(groupby) > 0 else None,
"row": groupby[1] if len(groupby) > 1 else None,
"height": height,
"aspect": aspect,
}
if col is not None:
facet_vars["col"] = col
if row is not None:
facet_vars["row"] = row
# Check that col and row parameters exist in dataframe columns
for param_name in ["col", "row"]:
if facet_vars[param_name] == feature:
raise ValueError(f"'{param_name}' cannot be the same as 'feature'")
if facet_vars[param_name] is not None and facet_vars[param_name] not in df.columns:
raise ValueError(
f"Parameter '{param_name}={facet_vars[param_name]}' not found in dataframe columns: {df.columns.tolist()}"
)
# Subtract baseline from feature
groupby = [x for x in [facet_vars["col"], facet_vars["row"]] if x is not None]
df = df_normalize_baseline(
df=df,
feature=feature,
groupby=groupby,
baseline_key=baseline_key,
baseline_groupby=baseline_groupby,
operation=operation,
remove_baseline=remove_baseline,
)
if norm is None:
norm = colors.CenteredNorm(vcenter=0, halfrange=0.5)
# Create FacetGrid
g = sns.FacetGrid(df, **facet_vars)
# Map the plotting function
g.map_dataframe(self._plot_matrix, feature=feature, color_palette=cmap, norm=norm)
# NOTE implement statistical testing with big N and small N
# Adjust layout
plt.tight_layout()
return g
def plot_diffheatmap_faceted(
self,
feature: str,
groupby: str | list[str],
facet_vars: str | list[str],
baseline_key: str
| bool
| tuple[str, ...], # NOTE these keys and groupbys only apply to the subfacets not the overall groupby
baseline_groupby: str | list[str] = None,
operation: Literal["subtract", "divide"] = "subtract",
remove_baseline: bool = False,
df: pd.DataFrame = None,
cmap: str = "RdBu_r",
norm: colors.Normalize | None = None,
**kwargs,
):
if isinstance(groupby, str):
groupby = [groupby]
if df is None:
pull_params = self._get_default_pull_timeseries_params()
pull_params.update({k: v for k, v in kwargs.items() if k in pull_params.keys()})
df = self.pull_timeseries_dataframe(feature=feature, groupby=groupby, **pull_params)
# Among the variables present, there are a few that need modification
# First modify groupby subtracting facetvars
if isinstance(facet_vars, str):
facet_vars = [facet_vars]
# FIXME this is a very ad hoc modification, and is tied to fixing pulldataframe accepting band as a feature
if feature in ["cohere", "zcohere", "imcoh", "zimcoh"]:
groupby.append("band")
subfacet_groupby = groupby.copy()
for facet_var in facet_vars:
if facet_var not in groupby:
raise ValueError(f"Facet variable {facet_var} must be present in groupby")
subfacet_groupby.remove(facet_var)
# Then iterate over the dataframe facet_Vars unique groupby keys, passing them to plot_heatmap and building a list of facetgrids
grids = []
for name, group in df.groupby(
facet_vars, sort=False
): # TODO look at everywhere else that groupby is performed and consider changing to sort=False
g = self.plot_diffheatmap(
feature=feature,
groupby=subfacet_groupby,
baseline_key=baseline_key,
baseline_groupby=baseline_groupby,
operation=operation,
remove_baseline=remove_baseline,
df=group,
cmap=cmap,
norm=norm,
**kwargs,
)
# Create title from facet variable values
if isinstance(name, tuple):
title = " | ".join(f"{var}={val}" for var, val in zip(facet_vars, name))
else:
title = f"{facet_vars[0]}={name}"
g.figure.suptitle(title, y=1.02)
grids.append(g)
return grids
def plot_qqplot(
self,
feature: str,
groupby: str | list[str],
df: pd.DataFrame = None,
col: str = None,
row: str = None,
log: bool = False,
channels: str | list[str] = "all",
collapse_channels: bool = False,
height: float = 3,
aspect: float = 1,
**kwargs,
):
"""
Create a QQ plot of the feature data.
"""
if feature in constants.MATRIX_FEATURES and not collapse_channels:
raise ValueError("To plot matrix features, collapse_channels must be True")
if feature in constants.HIST_FEATURES:
raise ValueError(f"'{feature}' is a histogram feature and is not supported in plot_qqplot")
if isinstance(groupby, str):
groupby = [groupby]
if df is None:
df = self.pull_timeseries_dataframe(feature, groupby, channels, collapse_channels, average_groupby=False)
# Create FacetGrid
facet_vars = {
"col": groupby[0],
"row": groupby[1] if len(groupby) > 1 else None,
"height": height,
"aspect": aspect,
}
if col is not None:
facet_vars["col"] = col
if row is not None:
facet_vars["row"] = row
# Check that col and row parameters exist in dataframe columns
for param_name in ["col", "row"]:
if facet_vars[param_name] == feature:
raise ValueError(f"'{param_name}' cannot be the same as 'feature'")
if facet_vars[param_name] is not None and facet_vars[param_name] not in df.columns:
raise ValueError(
f"Parameter '{param_name}={facet_vars[param_name]}' not found in dataframe columns: {df.columns.tolist()}"
)
g = sns.FacetGrid(df, margin_titles=True, **facet_vars)
g.map_dataframe(self._plot_qqplot, feature=feature, log=log, **kwargs)
g.set_titles(row_template="{row_name}", col_template="{col_name}")
plt.tight_layout()
return g
def _plot_qqplot(self, data: pd.DataFrame, feature: str, log: bool = False, **kwargs):
x = data[feature]
if log:
x = np.log(x)
x = x[np.isfinite(x)]
ax = plt.gca()
pp = sm.ProbPlot(x, fit=True)
pp.qqplot(line="45", ax=ax)
def _run_kstest(self, df: pd.DataFrame, feature: str, groupby: str | list[str]):
"""
Run a Kolmogorov-Smirnov test for normality on the feature data.
This is not recommended as the test is sensitive to large values.
"""
return df.groupby(groupby)[feature].apply(lambda x: stats.kstest(x, cdf="norm", nan_policy="omit"))
def _run_normaltest(self, df: pd.DataFrame, feature: str, groupby: str | list[str]):
"""
Run a D'Agostino-Pearson normality test on the feature data.
"""
return df.groupby(groupby)[feature].apply(lambda x: stats.normaltest(x, nan_policy="omit"))
|