Analysis
LongRecordingAnalyzer
Source code in pythoneeg/core/analysis.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
|
compute_ampvar(index, **kwargs)
Compute average amplitude variance
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
Index of time window |
required |
Returns:
Name | Type | Description |
---|---|---|
result |
np.ndarray with shape (1, M), M = number of channels |
Source code in pythoneeg/core/analysis.py
107 108 109 110 111 112 113 114 115 116 117 |
|
compute_logampvar(index, **kwargs)
Compute the log of the amplitude variance
Source code in pythoneeg/core/analysis.py
119 120 121 122 |
|
compute_logpsdband(index, welch_bin_t=1, notch_filter=True, bands=constants.FREQ_BANDS, multitaper=False, **kwargs)
Compute the log of the power spectral density of the signal for each frequency band.
Source code in pythoneeg/core/analysis.py
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
compute_logpsdfrac(index, welch_bin_t=1, notch_filter=True, bands=constants.FREQ_BANDS, total_band=constants.FREQ_BAND_TOTAL, multitaper=False, **kwargs)
Compute the log of the power spectral density in each band as a fraction of the total power.
Source code in pythoneeg/core/analysis.py
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|
compute_logpsdtotal(index, welch_bin_t=1, notch_filter=True, band=constants.FREQ_BAND_TOTAL, multitaper=False, **kwargs)
Compute the log of the total power over PSD (power spectral density) plot within a specified frequency band
Source code in pythoneeg/core/analysis.py
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
compute_logrms(index, **kwargs)
Compute the log of the root mean square amplitude
Source code in pythoneeg/core/analysis.py
102 103 104 105 |
|
compute_psd(index, welch_bin_t=1, notch_filter=True, multitaper=False, **kwargs)
Compute PSD (power spectral density)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
Index of time window |
required |
welch_bin_t
|
float
|
Length of time bins to use in Welch's method, in seconds. Defaults to 1. |
1
|
notch_filter
|
bool
|
If True, applies notch filter at line frequency. Defaults to True. |
True
|
multitaper
|
bool
|
If True, uses multitaper method instead of Welch's method. Defaults to False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
f |
ndarray
|
Array of sample frequencies |
psd |
ndarray
|
Array of PSD values at sample frequencies. (X, M), X = number of sample frequencies, M = number of channels. |
If sample window length is too short, PSD is interpolated |
Source code in pythoneeg/core/analysis.py
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
|
compute_psdband(index, welch_bin_t=1, notch_filter=True, bands=constants.FREQ_BANDS, multitaper=False, **kwargs)
Compute power spectral density of the signal for each frequency band.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
Index of time window |
required |
welch_bin_t
|
float
|
Length of time bins to use in Welch's method, in seconds. Defaults to 1. |
1
|
notch_filter
|
bool
|
If True, applies notch filter at line frequency. Defaults to True. |
True
|
bands
|
list[tuple[float, float]]
|
List of frequency bands to compute PSD for. Defaults to constants.FREQ_BANDS. |
FREQ_BANDS
|
multitaper
|
bool
|
If True, uses multitaper method instead of Welch's method. Defaults to False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
dict |
Dictionary mapping band names to PSD values for each channel |
Source code in pythoneeg/core/analysis.py
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
|
compute_psdfrac(index, welch_bin_t=1, notch_filter=True, bands=constants.FREQ_BANDS, total_band=constants.FREQ_BAND_TOTAL, multitaper=False, **kwargs)
Compute the power spectral density in each band as a fraction of the total power.
Source code in pythoneeg/core/analysis.py
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
|
compute_psdslope(index, welch_bin_t=1, notch_filter=True, band=constants.FREQ_BAND_TOTAL, multitaper=False, **kwargs)
Compute the slope of the power spectral density of the signal.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
Index of time window |
required |
welch_bin_t
|
float
|
Length of time bins to use in Welch's method, in seconds. Defaults to 1. |
1
|
notch_filter
|
bool
|
If True, applies notch filter at line frequency. Defaults to True. |
True
|
band
|
tuple[float, float]
|
Frequency band to calculate over. Defaults to constants.FREQ_BAND_TOTAL. |
FREQ_BAND_TOTAL
|
multitaper
|
bool
|
If True, uses multitaper method instead of Welch's method. Defaults to False. |
False
|
Returns:
Type | Description |
---|---|
np.ndarray: Array of shape (M,2) where M is number of channels. Each row contains [slope, intercept] of log-log fit. |
Source code in pythoneeg/core/analysis.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
|
compute_psdtotal(index, welch_bin_t=1, notch_filter=True, band=constants.FREQ_BAND_TOTAL, multitaper=False, **kwargs)
Compute total power over PSD (power spectral density) plot within a specified frequency band
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
Index of time window |
required |
welch_bin_t
|
float
|
Length of time bins to use in Welch's method, in seconds. Defaults to 1. |
1
|
notch_filter
|
bool
|
If True, applies notch filter at line frequency. Defaults to True. |
True
|
band
|
tuple[float, float]
|
Frequency band to calculate over. Defaults to constants.FREQ_BAND_TOTAL. |
FREQ_BAND_TOTAL
|
multitaper
|
bool
|
If True, uses multitaper method instead of Welch's method. Defaults to False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
psdtotal |
ndarray
|
(M,) long array, M = number of channels. Each value corresponds to sum total of PSD in that band at that channel |
Source code in pythoneeg/core/analysis.py
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
compute_rms(index, **kwargs)
Compute average root mean square amplitude
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
Index of time window |
required |
Returns:
Name | Type | Description |
---|---|---|
result |
np.ndarray with shape (1, M), M = number of channels |
Source code in pythoneeg/core/analysis.py
90 91 92 93 94 95 96 97 98 99 100 |
|
compute_zcohere(index, z_epsilon=1e-06, **kwargs)
Compute the Fisher z-transformed coherence of the signal.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
Index of time window |
required |
z_epsilon
|
float
|
Small value to prevent arctanh(1) = inf. Values are clipped to [-1+z_epsilon, 1-z_epsilon] |
1e-06
|
**kwargs
|
Additional arguments passed to compute_zcohere |
{}
|
Source code in pythoneeg/core/analysis.py
383 384 385 386 387 388 389 390 391 392 |
|
compute_zpcorr(index, z_epsilon=1e-06, **kwargs)
Compute the Fisher z-transformed Pearson correlation coefficient of the signal.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
Index of time window |
required |
z_epsilon
|
float
|
Small value to prevent arctanh(1) = inf. Values are clipped to [-1+z_epsilon, 1-z_epsilon] |
1e-06
|
**kwargs
|
Additional arguments passed to compute_zpcorr |
{}
|
Source code in pythoneeg/core/analysis.py
406 407 408 409 410 411 412 413 414 415 |
|
convert_idx_to_timebound(index)
Convert fragment index to timebound (start time, end time)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
Fragment index |
required |
Returns:
Type | Description |
---|---|
tuple[float, float]
|
tuple[float, float]: Timebound in seconds |
Source code in pythoneeg/core/analysis.py
343 344 345 346 347 348 349 350 351 352 353 354 355 |
|
get_fragment_mne(index, recobj=None)
Get window at index as a numpy array object, formatted for ease of use with MNE functions
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
Index of time window |
required |
recobj
|
BaseRecording
|
If not None, uses this recording object to get the numpy array. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Numpy array with dimensions (1, M, N), M = number of channels, N = number of samples. 1st dimension corresponds to number of epochs, which there is only 1 in a window. Values in uV |
Source code in pythoneeg/core/analysis.py
69 70 71 72 73 74 75 76 77 78 79 80 81 |
|
get_fragment_np(index, recobj=None)
Get window at index as a numpy array object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
Index of time window |
required |
recobj
|
BaseRecording
|
If not None, uses this recording object to get the numpy array. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Numpy array with dimensions (N, M), N = number of samples, M = number of channels. Values in uV |
Source code in pythoneeg/core/analysis.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
|
get_fragment_rec(index)
Get window at index as a spikeinterface recording object
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
Index of time window |
required |
Returns:
Type | Description |
---|---|
BaseRecording
|
si.BaseRecording: spikeinterface recording object |
Source code in pythoneeg/core/analysis.py
37 38 39 40 41 42 43 44 45 46 47 48 |
|